Metamath Proof Explorer


Theorem peirceroll

Description: Over minimal implicational calculus, Peirce's axiom peirce implies an axiom sometimes called "Roll", ( ( ( ph -> ps ) -> ch ) -> ( ( ch -> ph ) -> ph ) ) , of which looinv is a special instance. The converse also holds: substitute ( ph -> ps ) for ch in Roll and use id and ax-mp . (Contributed by BJ, 15-Jun-2021)

Ref Expression
Assertion peirceroll φ ψ φ φ φ ψ χ χ φ φ

Proof

Step Hyp Ref Expression
1 imim1 φ ψ χ χ φ φ ψ φ
2 id φ ψ φ φ φ ψ φ φ
3 1 2 syl9r φ ψ φ φ φ ψ χ χ φ φ