Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
|
2 |
1
|
ad5antlr |
|
3 |
|
simprl |
|
4 |
3
|
ad3antrrr |
|
5 |
|
simplrl |
|
6 |
4 5
|
zmulcld |
|
7 |
|
eldifi |
|
8 |
7
|
ad2antrr |
|
9 |
8
|
nnzd |
|
10 |
9
|
ad3antrrr |
|
11 |
|
simplrr |
|
12 |
|
simprr |
|
13 |
12
|
ad3antrrr |
|
14 |
11 13
|
zmulcld |
|
15 |
10 14
|
zmulcld |
|
16 |
6 15
|
zaddcld |
|
17 |
4 11
|
zmulcld |
|
18 |
5 13
|
zmulcld |
|
19 |
17 18
|
zaddcld |
|
20 |
|
simprl |
|
21 |
20
|
ad2antrr |
|
22 |
|
simprl |
|
23 |
21 22
|
oveq12d |
|
24 |
|
zcn |
|
25 |
24
|
ad2antrl |
|
26 |
25
|
ad3antrrr |
|
27 |
8
|
nncnd |
|
28 |
27
|
ad3antrrr |
|
29 |
28
|
sqrtcld |
|
30 |
|
zcn |
|
31 |
30
|
ad2antll |
|
32 |
31
|
ad3antrrr |
|
33 |
29 32
|
mulcld |
|
34 |
|
zcn |
|
35 |
34
|
adantr |
|
36 |
35
|
ad2antlr |
|
37 |
|
zcn |
|
38 |
37
|
adantl |
|
39 |
38
|
ad2antlr |
|
40 |
29 39
|
mulcld |
|
41 |
26 33 36 40
|
muladdd |
|
42 |
29 39 29 32
|
mul4d |
|
43 |
28
|
msqsqrtd |
|
44 |
43
|
oveq1d |
|
45 |
42 44
|
eqtrd |
|
46 |
45
|
oveq2d |
|
47 |
26 29 39
|
mul12d |
|
48 |
36 29 32
|
mul12d |
|
49 |
47 48
|
oveq12d |
|
50 |
26 39
|
mulcld |
|
51 |
36 32
|
mulcld |
|
52 |
29 50 51
|
adddid |
|
53 |
49 52
|
eqtr4d |
|
54 |
46 53
|
oveq12d |
|
55 |
23 41 54
|
3eqtrd |
|
56 |
50 51
|
addcld |
|
57 |
29 56
|
sqmuld |
|
58 |
28
|
sqsqrtd |
|
59 |
58
|
oveq1d |
|
60 |
57 59
|
eqtr2d |
|
61 |
60
|
oveq2d |
|
62 |
26 36
|
mulcld |
|
63 |
39 32
|
mulcld |
|
64 |
28 63
|
mulcld |
|
65 |
62 64
|
addcld |
|
66 |
29 56
|
mulcld |
|
67 |
|
subsq |
|
68 |
65 66 67
|
syl2anc |
|
69 |
41 54
|
eqtr2d |
|
70 |
26 33 36 40
|
mulsubd |
|
71 |
46 53
|
oveq12d |
|
72 |
70 71
|
eqtr2d |
|
73 |
69 72
|
oveq12d |
|
74 |
61 68 73
|
3eqtrd |
|
75 |
26 33
|
addcld |
|
76 |
36 40
|
addcld |
|
77 |
26 33
|
subcld |
|
78 |
36 40
|
subcld |
|
79 |
75 76 77 78
|
mul4d |
|
80 |
|
subsq |
|
81 |
26 33 80
|
syl2anc |
|
82 |
|
subsq |
|
83 |
36 40 82
|
syl2anc |
|
84 |
81 83
|
oveq12d |
|
85 |
29 32
|
sqmuld |
|
86 |
85
|
oveq2d |
|
87 |
29 39
|
sqmuld |
|
88 |
87
|
oveq2d |
|
89 |
86 88
|
oveq12d |
|
90 |
79 84 89
|
3eqtr2d |
|
91 |
58
|
oveq1d |
|
92 |
91
|
oveq2d |
|
93 |
58
|
oveq1d |
|
94 |
93
|
oveq2d |
|
95 |
92 94
|
oveq12d |
|
96 |
|
simprr |
|
97 |
96
|
ad2antrr |
|
98 |
|
simprr |
|
99 |
97 98
|
oveq12d |
|
100 |
|
1t1e1 |
|
101 |
100
|
a1i |
|
102 |
95 99 101
|
3eqtrd |
|
103 |
74 90 102
|
3eqtrd |
|
104 |
|
oveq1 |
|
105 |
104
|
eqeq2d |
|
106 |
|
oveq1 |
|
107 |
106
|
oveq1d |
|
108 |
107
|
eqeq1d |
|
109 |
105 108
|
anbi12d |
|
110 |
|
oveq2 |
|
111 |
110
|
oveq2d |
|
112 |
111
|
eqeq2d |
|
113 |
|
oveq1 |
|
114 |
113
|
oveq2d |
|
115 |
114
|
oveq2d |
|
116 |
115
|
eqeq1d |
|
117 |
112 116
|
anbi12d |
|
118 |
109 117
|
rspc2ev |
|
119 |
16 19 55 103 118
|
syl112anc |
|
120 |
2 119
|
jca |
|
121 |
120
|
ex |
|
122 |
121
|
rexlimdvva |
|
123 |
122
|
ex |
|
124 |
123
|
rexlimdvva |
|
125 |
124
|
impd |
|
126 |
125
|
expimpd |
|
127 |
|
elpell1234qr |
|
128 |
|
elpell1234qr |
|
129 |
127 128
|
anbi12d |
|
130 |
|
an4 |
|
131 |
129 130
|
bitrdi |
|
132 |
|
elpell1234qr |
|
133 |
126 131 132
|
3imtr4d |
|
134 |
133
|
3impib |
|