Metamath Proof Explorer


Theorem pell1234qrne0

Description: No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1234qrne0 D A Pell1234QR D A 0

Proof

Step Hyp Ref Expression
1 elpell1234qr D A Pell1234QR D A a b A = a + D b a 2 D b 2 = 1
2 simprl D A a b A = a + D b a 2 D b 2 = 1 A = a + D b
3 ax-1ne0 1 0
4 eldifi D D
5 4 adantr D A D
6 5 nncnd D A D
7 6 ad3antrrr D A a b a 2 D b 2 = 1 a + D b = 0 D
8 7 sqrtcld D A a b a 2 D b 2 = 1 a + D b = 0 D
9 zcn b b
10 9 ad2antll D A a b b
11 10 ad2antrr D A a b a 2 D b 2 = 1 a + D b = 0 b
12 8 11 sqmuld D A a b a 2 D b 2 = 1 a + D b = 0 D b 2 = D 2 b 2
13 7 sqsqrtd D A a b a 2 D b 2 = 1 a + D b = 0 D 2 = D
14 13 oveq1d D A a b a 2 D b 2 = 1 a + D b = 0 D 2 b 2 = D b 2
15 12 14 eqtr2d D A a b a 2 D b 2 = 1 a + D b = 0 D b 2 = D b 2
16 15 oveq2d D A a b a 2 D b 2 = 1 a + D b = 0 a 2 D b 2 = a 2 D b 2
17 zcn a a
18 17 ad2antrl D A a b a
19 18 ad2antrr D A a b a 2 D b 2 = 1 a + D b = 0 a
20 8 11 mulcld D A a b a 2 D b 2 = 1 a + D b = 0 D b
21 subsq a D b a 2 D b 2 = a + D b a D b
22 19 20 21 syl2anc D A a b a 2 D b 2 = 1 a + D b = 0 a 2 D b 2 = a + D b a D b
23 16 22 eqtrd D A a b a 2 D b 2 = 1 a + D b = 0 a 2 D b 2 = a + D b a D b
24 simplr D A a b a 2 D b 2 = 1 a + D b = 0 a 2 D b 2 = 1
25 simpr D A a b a 2 D b 2 = 1 a + D b = 0 a + D b = 0
26 25 oveq1d D A a b a 2 D b 2 = 1 a + D b = 0 a + D b a D b = 0 a D b
27 19 20 subcld D A a b a 2 D b 2 = 1 a + D b = 0 a D b
28 27 mul02d D A a b a 2 D b 2 = 1 a + D b = 0 0 a D b = 0
29 26 28 eqtrd D A a b a 2 D b 2 = 1 a + D b = 0 a + D b a D b = 0
30 23 24 29 3eqtr3d D A a b a 2 D b 2 = 1 a + D b = 0 1 = 0
31 30 ex D A a b a 2 D b 2 = 1 a + D b = 0 1 = 0
32 31 necon3d D A a b a 2 D b 2 = 1 1 0 a + D b 0
33 3 32 mpi D A a b a 2 D b 2 = 1 a + D b 0
34 33 adantrl D A a b A = a + D b a 2 D b 2 = 1 a + D b 0
35 2 34 eqnetrd D A a b A = a + D b a 2 D b 2 = 1 A 0
36 35 ex D A a b A = a + D b a 2 D b 2 = 1 A 0
37 36 rexlimdvva D A a b A = a + D b a 2 D b 2 = 1 A 0
38 37 expimpd D A a b A = a + D b a 2 D b 2 = 1 A 0
39 1 38 sylbid D A Pell1234QR D A 0
40 39 imp D A Pell1234QR D A 0