Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1234qr |
|
2 |
|
simprl |
|
3 |
|
ax-1ne0 |
|
4 |
|
eldifi |
|
5 |
4
|
adantr |
|
6 |
5
|
nncnd |
|
7 |
6
|
ad3antrrr |
|
8 |
7
|
sqrtcld |
|
9 |
|
zcn |
|
10 |
9
|
ad2antll |
|
11 |
10
|
ad2antrr |
|
12 |
8 11
|
sqmuld |
|
13 |
7
|
sqsqrtd |
|
14 |
13
|
oveq1d |
|
15 |
12 14
|
eqtr2d |
|
16 |
15
|
oveq2d |
|
17 |
|
zcn |
|
18 |
17
|
ad2antrl |
|
19 |
18
|
ad2antrr |
|
20 |
8 11
|
mulcld |
|
21 |
|
subsq |
|
22 |
19 20 21
|
syl2anc |
|
23 |
16 22
|
eqtrd |
|
24 |
|
simplr |
|
25 |
|
simpr |
|
26 |
25
|
oveq1d |
|
27 |
19 20
|
subcld |
|
28 |
27
|
mul02d |
|
29 |
26 28
|
eqtrd |
|
30 |
23 24 29
|
3eqtr3d |
|
31 |
30
|
ex |
|
32 |
31
|
necon3d |
|
33 |
3 32
|
mpi |
|
34 |
33
|
adantrl |
|
35 |
2 34
|
eqnetrd |
|
36 |
35
|
ex |
|
37 |
36
|
rexlimdvva |
|
38 |
37
|
expimpd |
|
39 |
1 38
|
sylbid |
|
40 |
39
|
imp |
|