Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1234qr |
|
2 |
1
|
biimpa |
|
3 |
|
pell1234qrre |
|
4 |
|
pell1234qrne0 |
|
5 |
3 4
|
rereccld |
|
6 |
5
|
ad2antrr |
|
7 |
|
simplrl |
|
8 |
|
simplrr |
|
9 |
8
|
znegcld |
|
10 |
5
|
recnd |
|
11 |
10
|
ad2antrr |
|
12 |
|
zcn |
|
13 |
12
|
adantr |
|
14 |
13
|
ad2antlr |
|
15 |
|
eldifi |
|
16 |
15
|
nncnd |
|
17 |
16
|
ad3antrrr |
|
18 |
17
|
sqrtcld |
|
19 |
8
|
zcnd |
|
20 |
19
|
negcld |
|
21 |
18 20
|
mulcld |
|
22 |
14 21
|
addcld |
|
23 |
3
|
recnd |
|
24 |
23
|
ad2antrr |
|
25 |
4
|
ad2antrr |
|
26 |
18 19
|
sqmuld |
|
27 |
17
|
sqsqrtd |
|
28 |
27
|
oveq1d |
|
29 |
26 28
|
eqtr2d |
|
30 |
29
|
oveq2d |
|
31 |
|
simprr |
|
32 |
18 19
|
mulcld |
|
33 |
|
subsq |
|
34 |
14 32 33
|
syl2anc |
|
35 |
30 31 34
|
3eqtr3d |
|
36 |
24 25
|
recidd |
|
37 |
|
simprl |
|
38 |
18 19
|
mulneg2d |
|
39 |
38
|
oveq2d |
|
40 |
14 32
|
negsubd |
|
41 |
39 40
|
eqtrd |
|
42 |
37 41
|
oveq12d |
|
43 |
35 36 42
|
3eqtr4d |
|
44 |
11 22 24 25 43
|
mulcanad |
|
45 |
|
sqneg |
|
46 |
19 45
|
syl |
|
47 |
46
|
oveq2d |
|
48 |
47
|
oveq2d |
|
49 |
48 31
|
eqtrd |
|
50 |
|
oveq1 |
|
51 |
50
|
eqeq2d |
|
52 |
|
oveq1 |
|
53 |
52
|
oveq1d |
|
54 |
53
|
eqeq1d |
|
55 |
51 54
|
anbi12d |
|
56 |
|
oveq2 |
|
57 |
56
|
oveq2d |
|
58 |
57
|
eqeq2d |
|
59 |
|
oveq1 |
|
60 |
59
|
oveq2d |
|
61 |
60
|
oveq2d |
|
62 |
61
|
eqeq1d |
|
63 |
58 62
|
anbi12d |
|
64 |
55 63
|
rspc2ev |
|
65 |
7 9 44 49 64
|
syl112anc |
|
66 |
6 65
|
jca |
|
67 |
66
|
ex |
|
68 |
67
|
rexlimdvva |
|
69 |
68
|
adantld |
|
70 |
2 69
|
mpd |
|
71 |
|
elpell1234qr |
|
72 |
71
|
adantr |
|
73 |
70 72
|
mpbird |
|