Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Pell equations 2: Algebraic number theory of the solution set
pell1234qrval
Next ⟩
elpell1234qr
Metamath Proof Explorer
Ascii
Unicode
Theorem
pell1234qrval
Description:
Value of the set of general Pell solutions.
(Contributed by
Stefan O'Rear
, 17-Sep-2014)
Ref
Expression
Assertion
pell1234qrval
⊢
D
∈
ℕ
∖
◻
ℕ
→
Pell1234QR
⁡
D
=
y
∈
ℝ
|
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
D
⁢
w
∧
z
2
−
D
⁢
w
2
=
1
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
d
=
D
→
d
=
D
2
1
oveq1d
⊢
d
=
D
→
d
⁢
w
=
D
⁢
w
3
2
oveq2d
⊢
d
=
D
→
z
+
d
⁢
w
=
z
+
D
⁢
w
4
3
eqeq2d
⊢
d
=
D
→
y
=
z
+
d
⁢
w
↔
y
=
z
+
D
⁢
w
5
oveq1
⊢
d
=
D
→
d
⁢
w
2
=
D
⁢
w
2
6
5
oveq2d
⊢
d
=
D
→
z
2
−
d
⁢
w
2
=
z
2
−
D
⁢
w
2
7
6
eqeq1d
⊢
d
=
D
→
z
2
−
d
⁢
w
2
=
1
↔
z
2
−
D
⁢
w
2
=
1
8
4
7
anbi12d
⊢
d
=
D
→
y
=
z
+
d
⁢
w
∧
z
2
−
d
⁢
w
2
=
1
↔
y
=
z
+
D
⁢
w
∧
z
2
−
D
⁢
w
2
=
1
9
8
2rexbidv
⊢
d
=
D
→
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
d
⁢
w
∧
z
2
−
d
⁢
w
2
=
1
↔
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
D
⁢
w
∧
z
2
−
D
⁢
w
2
=
1
10
9
rabbidv
⊢
d
=
D
→
y
∈
ℝ
|
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
d
⁢
w
∧
z
2
−
d
⁢
w
2
=
1
=
y
∈
ℝ
|
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
D
⁢
w
∧
z
2
−
D
⁢
w
2
=
1
11
df-pell1234qr
⊢
Pell1234QR
=
d
∈
ℕ
∖
◻
ℕ
⟼
y
∈
ℝ
|
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
d
⁢
w
∧
z
2
−
d
⁢
w
2
=
1
12
reex
⊢
ℝ
∈
V
13
12
rabex
⊢
y
∈
ℝ
|
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
D
⁢
w
∧
z
2
−
D
⁢
w
2
=
1
∈
V
14
10
11
13
fvmpt
⊢
D
∈
ℕ
∖
◻
ℕ
→
Pell1234QR
⁡
D
=
y
∈
ℝ
|
∃
z
∈
ℤ
∃
w
∈
ℤ
y
=
z
+
D
⁢
w
∧
z
2
−
D
⁢
w
2
=
1