Metamath Proof Explorer


Theorem pell1234qrval

Description: Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1234qrval D Pell1234QR D = y | z w y = z + D w z 2 D w 2 = 1

Proof

Step Hyp Ref Expression
1 fveq2 d = D d = D
2 1 oveq1d d = D d w = D w
3 2 oveq2d d = D z + d w = z + D w
4 3 eqeq2d d = D y = z + d w y = z + D w
5 oveq1 d = D d w 2 = D w 2
6 5 oveq2d d = D z 2 d w 2 = z 2 D w 2
7 6 eqeq1d d = D z 2 d w 2 = 1 z 2 D w 2 = 1
8 4 7 anbi12d d = D y = z + d w z 2 d w 2 = 1 y = z + D w z 2 D w 2 = 1
9 8 2rexbidv d = D z w y = z + d w z 2 d w 2 = 1 z w y = z + D w z 2 D w 2 = 1
10 9 rabbidv d = D y | z w y = z + d w z 2 d w 2 = 1 = y | z w y = z + D w z 2 D w 2 = 1
11 df-pell1234qr Pell1234QR = d y | z w y = z + d w z 2 d w 2 = 1
12 reex V
13 12 rabex y | z w y = z + D w z 2 D w 2 = 1 V
14 10 11 13 fvmpt D Pell1234QR D = y | z w y = z + D w z 2 D w 2 = 1