Metamath Proof Explorer


Theorem pell14qrdivcl

Description: Positive Pell solutions are closed under division. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrdivcl D A Pell14QR D B Pell14QR D A B Pell14QR D

Proof

Step Hyp Ref Expression
1 pell14qrre D A Pell14QR D A
2 1 recnd D A Pell14QR D A
3 2 3adant3 D A Pell14QR D B Pell14QR D A
4 pell14qrre D B Pell14QR D B
5 4 recnd D B Pell14QR D B
6 5 3adant2 D A Pell14QR D B Pell14QR D B
7 pell14qrne0 D B Pell14QR D B 0
8 7 3adant2 D A Pell14QR D B Pell14QR D B 0
9 3 6 8 divrecd D A Pell14QR D B Pell14QR D A B = A 1 B
10 pell14qrreccl D B Pell14QR D 1 B Pell14QR D
11 10 3adant2 D A Pell14QR D B Pell14QR D 1 B Pell14QR D
12 pell14qrmulcl D A Pell14QR D 1 B Pell14QR D A 1 B Pell14QR D
13 11 12 syld3an3 D A Pell14QR D B Pell14QR D A 1 B Pell14QR D
14 9 13 eqeltrd D A Pell14QR D B Pell14QR D A B Pell14QR D