Metamath Proof Explorer


Theorem pell14qrgapw

Description: Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrgapw D A Pell14QR D 1 < A 2 < A

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i D A Pell14QR D 1 < A 2
3 eldifi D D
4 3 3ad2ant1 D A Pell14QR D 1 < A D
5 4 nnrpd D A Pell14QR D 1 < A D +
6 1rp 1 +
7 6 a1i D A Pell14QR D 1 < A 1 +
8 5 7 rpaddcld D A Pell14QR D 1 < A D + 1 +
9 8 rpsqrtcld D A Pell14QR D 1 < A D + 1 +
10 9 rpred D A Pell14QR D 1 < A D + 1
11 5 rpsqrtcld D A Pell14QR D 1 < A D +
12 11 rpred D A Pell14QR D 1 < A D
13 10 12 readdcld D A Pell14QR D 1 < A D + 1 + D
14 pell14qrre D A Pell14QR D A
15 14 3adant3 D A Pell14QR D 1 < A A
16 df-2 2 = 1 + 1
17 1red D A Pell14QR D 1 < A 1
18 4 nnred D A Pell14QR D 1 < A D
19 peano2re D D + 1
20 18 19 syl D A Pell14QR D 1 < A D + 1
21 4 nnge1d D A Pell14QR D 1 < A 1 D
22 18 ltp1d D A Pell14QR D 1 < A D < D + 1
23 17 18 20 21 22 lelttrd D A Pell14QR D 1 < A 1 < D + 1
24 sq1 1 2 = 1
25 24 a1i D A Pell14QR D 1 < A 1 2 = 1
26 4 nncnd D A Pell14QR D 1 < A D
27 peano2cn D D + 1
28 26 27 syl D A Pell14QR D 1 < A D + 1
29 28 sqsqrtd D A Pell14QR D 1 < A D + 1 2 = D + 1
30 23 25 29 3brtr4d D A Pell14QR D 1 < A 1 2 < D + 1 2
31 0le1 0 1
32 31 a1i D A Pell14QR D 1 < A 0 1
33 9 rpge0d D A Pell14QR D 1 < A 0 D + 1
34 17 10 32 33 lt2sqd D A Pell14QR D 1 < A 1 < D + 1 1 2 < D + 1 2
35 30 34 mpbird D A Pell14QR D 1 < A 1 < D + 1
36 26 sqsqrtd D A Pell14QR D 1 < A D 2 = D
37 21 25 36 3brtr4d D A Pell14QR D 1 < A 1 2 D 2
38 11 rpge0d D A Pell14QR D 1 < A 0 D
39 17 12 32 38 le2sqd D A Pell14QR D 1 < A 1 D 1 2 D 2
40 37 39 mpbird D A Pell14QR D 1 < A 1 D
41 17 17 10 12 35 40 ltleaddd D A Pell14QR D 1 < A 1 + 1 < D + 1 + D
42 16 41 eqbrtrid D A Pell14QR D 1 < A 2 < D + 1 + D
43 pell14qrgap D A Pell14QR D 1 < A D + 1 + D A
44 2 13 15 42 43 ltletrd D A Pell14QR D 1 < A 2 < A