Metamath Proof Explorer


Theorem pell14qrgt0

Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrgt0 D A Pell14QR D 0 < A

Proof

Step Hyp Ref Expression
1 elpell14qr D A Pell14QR D A a 0 b A = a + D b a 2 D b 2 = 1
2 0cnd D A a 0 b a 2 D b 2 = 1 0
3 eldifi D D
4 3 ad3antrrr D A a 0 b a 2 D b 2 = 1 D
5 4 nnred D A a 0 b a 2 D b 2 = 1 D
6 4 nnnn0d D A a 0 b a 2 D b 2 = 1 D 0
7 6 nn0ge0d D A a 0 b a 2 D b 2 = 1 0 D
8 5 7 resqrtcld D A a 0 b a 2 D b 2 = 1 D
9 zre b b
10 9 adantl a 0 b b
11 10 ad2antlr D A a 0 b a 2 D b 2 = 1 b
12 8 11 remulcld D A a 0 b a 2 D b 2 = 1 D b
13 12 recnd D A a 0 b a 2 D b 2 = 1 D b
14 2 13 abssubd D A a 0 b a 2 D b 2 = 1 0 D b = D b 0
15 13 subid1d D A a 0 b a 2 D b 2 = 1 D b 0 = D b
16 15 fveq2d D A a 0 b a 2 D b 2 = 1 D b 0 = D b
17 14 16 eqtrd D A a 0 b a 2 D b 2 = 1 0 D b = D b
18 absresq D b D b 2 = D b 2
19 12 18 syl D A a 0 b a 2 D b 2 = 1 D b 2 = D b 2
20 5 recnd D A a 0 b a 2 D b 2 = 1 D
21 20 sqrtcld D A a 0 b a 2 D b 2 = 1 D
22 10 recnd a 0 b b
23 22 ad2antlr D A a 0 b a 2 D b 2 = 1 b
24 21 23 sqmuld D A a 0 b a 2 D b 2 = 1 D b 2 = D 2 b 2
25 20 sqsqrtd D A a 0 b a 2 D b 2 = 1 D 2 = D
26 25 oveq1d D A a 0 b a 2 D b 2 = 1 D 2 b 2 = D b 2
27 19 24 26 3eqtrd D A a 0 b a 2 D b 2 = 1 D b 2 = D b 2
28 0lt1 0 < 1
29 simpr D A a 0 b a 2 D b 2 = 1 a 2 D b 2 = 1
30 28 29 breqtrrid D A a 0 b a 2 D b 2 = 1 0 < a 2 D b 2
31 11 resqcld D A a 0 b a 2 D b 2 = 1 b 2
32 5 31 remulcld D A a 0 b a 2 D b 2 = 1 D b 2
33 nn0re a 0 a
34 33 adantr a 0 b a
35 34 ad2antlr D A a 0 b a 2 D b 2 = 1 a
36 35 resqcld D A a 0 b a 2 D b 2 = 1 a 2
37 32 36 posdifd D A a 0 b a 2 D b 2 = 1 D b 2 < a 2 0 < a 2 D b 2
38 30 37 mpbird D A a 0 b a 2 D b 2 = 1 D b 2 < a 2
39 27 38 eqbrtrd D A a 0 b a 2 D b 2 = 1 D b 2 < a 2
40 13 abscld D A a 0 b a 2 D b 2 = 1 D b
41 13 absge0d D A a 0 b a 2 D b 2 = 1 0 D b
42 nn0ge0 a 0 0 a
43 42 adantr a 0 b 0 a
44 43 ad2antlr D A a 0 b a 2 D b 2 = 1 0 a
45 40 35 41 44 lt2sqd D A a 0 b a 2 D b 2 = 1 D b < a D b 2 < a 2
46 39 45 mpbird D A a 0 b a 2 D b 2 = 1 D b < a
47 17 46 eqbrtrd D A a 0 b a 2 D b 2 = 1 0 D b < a
48 0red D A a 0 b a 2 D b 2 = 1 0
49 48 12 35 absdifltd D A a 0 b a 2 D b 2 = 1 0 D b < a D b a < 0 0 < D b + a
50 47 49 mpbid D A a 0 b a 2 D b 2 = 1 D b a < 0 0 < D b + a
51 50 simprd D A a 0 b a 2 D b 2 = 1 0 < D b + a
52 nn0cn a 0 a
53 52 adantr a 0 b a
54 53 ad2antlr D A a 0 b a 2 D b 2 = 1 a
55 54 13 addcomd D A a 0 b a 2 D b 2 = 1 a + D b = D b + a
56 51 55 breqtrrd D A a 0 b a 2 D b 2 = 1 0 < a + D b
57 56 adantrl D A a 0 b A = a + D b a 2 D b 2 = 1 0 < a + D b
58 simprl D A a 0 b A = a + D b a 2 D b 2 = 1 A = a + D b
59 57 58 breqtrrd D A a 0 b A = a + D b a 2 D b 2 = 1 0 < A
60 59 ex D A a 0 b A = a + D b a 2 D b 2 = 1 0 < A
61 60 rexlimdvva D A a 0 b A = a + D b a 2 D b 2 = 1 0 < A
62 61 expimpd D A a 0 b A = a + D b a 2 D b 2 = 1 0 < A
63 1 62 sylbid D A Pell14QR D 0 < A
64 63 imp D A Pell14QR D 0 < A