Metamath Proof Explorer


Theorem pell14qrmulcl

Description: Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell14qrmulcl D A Pell14QR D B Pell14QR D A B Pell14QR D

Proof

Step Hyp Ref Expression
1 simpl D A Pell1234QR D 0 < A B Pell1234QR D 0 < B D
2 simprll D A Pell1234QR D 0 < A B Pell1234QR D 0 < B A Pell1234QR D
3 simprrl D A Pell1234QR D 0 < A B Pell1234QR D 0 < B B Pell1234QR D
4 pell1234qrmulcl D A Pell1234QR D B Pell1234QR D A B Pell1234QR D
5 1 2 3 4 syl3anc D A Pell1234QR D 0 < A B Pell1234QR D 0 < B A B Pell1234QR D
6 pell1234qrre D A Pell1234QR D A
7 2 6 syldan D A Pell1234QR D 0 < A B Pell1234QR D 0 < B A
8 pell1234qrre D B Pell1234QR D B
9 3 8 syldan D A Pell1234QR D 0 < A B Pell1234QR D 0 < B B
10 simprlr D A Pell1234QR D 0 < A B Pell1234QR D 0 < B 0 < A
11 simprrr D A Pell1234QR D 0 < A B Pell1234QR D 0 < B 0 < B
12 7 9 10 11 mulgt0d D A Pell1234QR D 0 < A B Pell1234QR D 0 < B 0 < A B
13 5 12 jca D A Pell1234QR D 0 < A B Pell1234QR D 0 < B A B Pell1234QR D 0 < A B
14 13 ex D A Pell1234QR D 0 < A B Pell1234QR D 0 < B A B Pell1234QR D 0 < A B
15 elpell14qr2 D A Pell14QR D A Pell1234QR D 0 < A
16 elpell14qr2 D B Pell14QR D B Pell1234QR D 0 < B
17 15 16 anbi12d D A Pell14QR D B Pell14QR D A Pell1234QR D 0 < A B Pell1234QR D 0 < B
18 elpell14qr2 D A B Pell14QR D A B Pell1234QR D 0 < A B
19 14 17 18 3imtr4d D A Pell14QR D B Pell14QR D A B Pell14QR D
20 19 3impib D A Pell14QR D B Pell14QR D A B Pell14QR D