Metamath Proof Explorer


Theorem pell14qrss1234

Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrss1234 D Pell14QR D Pell1234QR D

Proof

Step Hyp Ref Expression
1 nn0z b 0 b
2 1 a1i D b 0 b
3 2 anim1d D b 0 c a = b + D c b 2 D c 2 = 1 b c a = b + D c b 2 D c 2 = 1
4 3 reximdv2 D b 0 c a = b + D c b 2 D c 2 = 1 b c a = b + D c b 2 D c 2 = 1
5 4 anim2d D a b 0 c a = b + D c b 2 D c 2 = 1 a b c a = b + D c b 2 D c 2 = 1
6 elpell14qr D a Pell14QR D a b 0 c a = b + D c b 2 D c 2 = 1
7 elpell1234qr D a Pell1234QR D a b c a = b + D c b 2 D c 2 = 1
8 5 6 7 3imtr4d D a Pell14QR D a Pell1234QR D
9 8 ssrdv D Pell14QR D Pell1234QR D