Metamath Proof Explorer


Theorem pell14qrval

Description: Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell14qrval D Pell14QR D = y | z 0 w y = z + D w z 2 D w 2 = 1

Proof

Step Hyp Ref Expression
1 fveq2 a = D a = D
2 1 oveq1d a = D a w = D w
3 2 oveq2d a = D z + a w = z + D w
4 3 eqeq2d a = D y = z + a w y = z + D w
5 oveq1 a = D a w 2 = D w 2
6 5 oveq2d a = D z 2 a w 2 = z 2 D w 2
7 6 eqeq1d a = D z 2 a w 2 = 1 z 2 D w 2 = 1
8 4 7 anbi12d a = D y = z + a w z 2 a w 2 = 1 y = z + D w z 2 D w 2 = 1
9 8 2rexbidv a = D z 0 w y = z + a w z 2 a w 2 = 1 z 0 w y = z + D w z 2 D w 2 = 1
10 9 rabbidv a = D y | z 0 w y = z + a w z 2 a w 2 = 1 = y | z 0 w y = z + D w z 2 D w 2 = 1
11 df-pell14qr Pell14QR = a y | z 0 w y = z + a w z 2 a w 2 = 1
12 reex V
13 12 rabex y | z 0 w y = z + D w z 2 D w 2 = 1 V
14 10 11 13 fvmpt D Pell14QR D = y | z 0 w y = z + D w z 2 D w 2 = 1