Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1qr |
|
2 |
|
1red |
|
3 |
|
simplrl |
|
4 |
3
|
nn0red |
|
5 |
|
eldifi |
|
6 |
5
|
ad3antrrr |
|
7 |
6
|
nnnn0d |
|
8 |
7
|
nn0red |
|
9 |
7
|
nn0ge0d |
|
10 |
8 9
|
resqrtcld |
|
11 |
|
simplrr |
|
12 |
11
|
nn0red |
|
13 |
10 12
|
remulcld |
|
14 |
4 13
|
readdcld |
|
15 |
|
2nn0 |
|
16 |
15
|
a1i |
|
17 |
11 16
|
nn0expcld |
|
18 |
7 17
|
nn0mulcld |
|
19 |
18
|
nn0ge0d |
|
20 |
18
|
nn0red |
|
21 |
2 20
|
addge02d |
|
22 |
19 21
|
mpbid |
|
23 |
|
sq1 |
|
24 |
23
|
a1i |
|
25 |
|
nn0cn |
|
26 |
25
|
ad2antrl |
|
27 |
26
|
sqcld |
|
28 |
5
|
ad2antrr |
|
29 |
28
|
nncnd |
|
30 |
|
nn0cn |
|
31 |
30
|
ad2antll |
|
32 |
31
|
sqcld |
|
33 |
29 32
|
mulcld |
|
34 |
|
1cnd |
|
35 |
27 33 34
|
subaddd |
|
36 |
35
|
biimpa |
|
37 |
36
|
eqcomd |
|
38 |
22 24 37
|
3brtr4d |
|
39 |
|
0le1 |
|
40 |
39
|
a1i |
|
41 |
3
|
nn0ge0d |
|
42 |
2 4 40 41
|
le2sqd |
|
43 |
38 42
|
mpbird |
|
44 |
8 9
|
sqrtge0d |
|
45 |
11
|
nn0ge0d |
|
46 |
10 12 44 45
|
mulge0d |
|
47 |
4 13
|
addge01d |
|
48 |
46 47
|
mpbid |
|
49 |
2 4 14 43 48
|
letrd |
|
50 |
49
|
adantrl |
|
51 |
|
simprl |
|
52 |
50 51
|
breqtrrd |
|
53 |
52
|
ex |
|
54 |
53
|
rexlimdvva |
|
55 |
54
|
expimpd |
|
56 |
1 55
|
sylbid |
|
57 |
56
|
imp |
|