Metamath Proof Explorer


Theorem pell1qrge1

Description: A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1qrge1 D A Pell1QR D 1 A

Proof

Step Hyp Ref Expression
1 elpell1qr D A Pell1QR D A a 0 b 0 A = a + D b a 2 D b 2 = 1
2 1red D A a 0 b 0 a 2 D b 2 = 1 1
3 simplrl D A a 0 b 0 a 2 D b 2 = 1 a 0
4 3 nn0red D A a 0 b 0 a 2 D b 2 = 1 a
5 eldifi D D
6 5 ad3antrrr D A a 0 b 0 a 2 D b 2 = 1 D
7 6 nnnn0d D A a 0 b 0 a 2 D b 2 = 1 D 0
8 7 nn0red D A a 0 b 0 a 2 D b 2 = 1 D
9 7 nn0ge0d D A a 0 b 0 a 2 D b 2 = 1 0 D
10 8 9 resqrtcld D A a 0 b 0 a 2 D b 2 = 1 D
11 simplrr D A a 0 b 0 a 2 D b 2 = 1 b 0
12 11 nn0red D A a 0 b 0 a 2 D b 2 = 1 b
13 10 12 remulcld D A a 0 b 0 a 2 D b 2 = 1 D b
14 4 13 readdcld D A a 0 b 0 a 2 D b 2 = 1 a + D b
15 2nn0 2 0
16 15 a1i D A a 0 b 0 a 2 D b 2 = 1 2 0
17 11 16 nn0expcld D A a 0 b 0 a 2 D b 2 = 1 b 2 0
18 7 17 nn0mulcld D A a 0 b 0 a 2 D b 2 = 1 D b 2 0
19 18 nn0ge0d D A a 0 b 0 a 2 D b 2 = 1 0 D b 2
20 18 nn0red D A a 0 b 0 a 2 D b 2 = 1 D b 2
21 2 20 addge02d D A a 0 b 0 a 2 D b 2 = 1 0 D b 2 1 D b 2 + 1
22 19 21 mpbid D A a 0 b 0 a 2 D b 2 = 1 1 D b 2 + 1
23 sq1 1 2 = 1
24 23 a1i D A a 0 b 0 a 2 D b 2 = 1 1 2 = 1
25 nn0cn a 0 a
26 25 ad2antrl D A a 0 b 0 a
27 26 sqcld D A a 0 b 0 a 2
28 5 ad2antrr D A a 0 b 0 D
29 28 nncnd D A a 0 b 0 D
30 nn0cn b 0 b
31 30 ad2antll D A a 0 b 0 b
32 31 sqcld D A a 0 b 0 b 2
33 29 32 mulcld D A a 0 b 0 D b 2
34 1cnd D A a 0 b 0 1
35 27 33 34 subaddd D A a 0 b 0 a 2 D b 2 = 1 D b 2 + 1 = a 2
36 35 biimpa D A a 0 b 0 a 2 D b 2 = 1 D b 2 + 1 = a 2
37 36 eqcomd D A a 0 b 0 a 2 D b 2 = 1 a 2 = D b 2 + 1
38 22 24 37 3brtr4d D A a 0 b 0 a 2 D b 2 = 1 1 2 a 2
39 0le1 0 1
40 39 a1i D A a 0 b 0 a 2 D b 2 = 1 0 1
41 3 nn0ge0d D A a 0 b 0 a 2 D b 2 = 1 0 a
42 2 4 40 41 le2sqd D A a 0 b 0 a 2 D b 2 = 1 1 a 1 2 a 2
43 38 42 mpbird D A a 0 b 0 a 2 D b 2 = 1 1 a
44 8 9 sqrtge0d D A a 0 b 0 a 2 D b 2 = 1 0 D
45 11 nn0ge0d D A a 0 b 0 a 2 D b 2 = 1 0 b
46 10 12 44 45 mulge0d D A a 0 b 0 a 2 D b 2 = 1 0 D b
47 4 13 addge01d D A a 0 b 0 a 2 D b 2 = 1 0 D b a a + D b
48 46 47 mpbid D A a 0 b 0 a 2 D b 2 = 1 a a + D b
49 2 4 14 43 48 letrd D A a 0 b 0 a 2 D b 2 = 1 1 a + D b
50 49 adantrl D A a 0 b 0 A = a + D b a 2 D b 2 = 1 1 a + D b
51 simprl D A a 0 b 0 A = a + D b a 2 D b 2 = 1 A = a + D b
52 50 51 breqtrrd D A a 0 b 0 A = a + D b a 2 D b 2 = 1 1 A
53 52 ex D A a 0 b 0 A = a + D b a 2 D b 2 = 1 1 A
54 53 rexlimdvva D A a 0 b 0 A = a + D b a 2 D b 2 = 1 1 A
55 54 expimpd D A a 0 b 0 A = a + D b a 2 D b 2 = 1 1 A
56 1 55 sylbid D A Pell1QR D 1 A
57 56 imp D A Pell1QR D 1 A