Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
|
2 |
|
xpfi |
|
3 |
1 1 2
|
mp2an |
|
4 |
|
isfinite |
|
5 |
3 4
|
mpbi |
|
6 |
|
nnenom |
|
7 |
6
|
ensymi |
|
8 |
|
sdomentr |
|
9 |
5 7 8
|
mp2an |
|
10 |
|
ensym |
|
11 |
10
|
ad2antll |
|
12 |
|
sdomentr |
|
13 |
9 11 12
|
sylancr |
|
14 |
|
opabssxp |
|
15 |
14
|
sseli |
|
16 |
|
simprrl |
|
17 |
16
|
nnzd |
|
18 |
|
simpllr |
|
19 |
|
simplr |
|
20 |
|
nnabscl |
|
21 |
18 19 20
|
syl2anc |
|
22 |
|
zmodfz |
|
23 |
17 21 22
|
syl2anc |
|
24 |
|
simprrr |
|
25 |
24
|
nnzd |
|
26 |
|
zmodfz |
|
27 |
25 21 26
|
syl2anc |
|
28 |
23 27
|
jca |
|
29 |
28
|
ex |
|
30 |
|
elxp7 |
|
31 |
|
opelxp |
|
32 |
29 30 31
|
3imtr4g |
|
33 |
15 32
|
syl5 |
|
34 |
33
|
imp |
|
35 |
34
|
adantlrr |
|
36 |
|
fveq2 |
|
37 |
36
|
oveq1d |
|
38 |
|
fveq2 |
|
39 |
38
|
oveq1d |
|
40 |
37 39
|
opeq12d |
|
41 |
13 35 40
|
fphpd |
|
42 |
|
eleq1w |
|
43 |
|
eleq1w |
|
44 |
42 43
|
bi2anan9 |
|
45 |
|
oveq1 |
|
46 |
|
oveq1 |
|
47 |
46
|
oveq2d |
|
48 |
45 47
|
oveqan12d |
|
49 |
48
|
eqeq1d |
|
50 |
44 49
|
anbi12d |
|
51 |
50
|
cbvopabv |
|
52 |
51
|
eleq2i |
|
53 |
52
|
biimpi |
|
54 |
|
elopab |
|
55 |
|
elopab |
|
56 |
|
simp3ll |
|
57 |
56
|
3expb |
|
58 |
57
|
3ad2ant1 |
|
59 |
|
simp3lr |
|
60 |
59
|
3expb |
|
61 |
60
|
3ad2ant1 |
|
62 |
|
simp1lr |
|
63 |
62
|
3adant1r |
|
64 |
|
simp-4l |
|
65 |
64
|
3ad2ant1 |
|
66 |
|
simp-4r |
|
67 |
66
|
3ad2ant1 |
|
68 |
|
simp2ll |
|
69 |
68
|
3adant2l |
|
70 |
|
simp2lr |
|
71 |
70
|
3adant2l |
|
72 |
|
simp2l |
|
73 |
|
simp1rl |
|
74 |
|
simp3l |
|
75 |
|
simp3 |
|
76 |
|
simp2 |
|
77 |
|
simp1 |
|
78 |
75 76 77
|
3netr3d |
|
79 |
|
vex |
|
80 |
|
vex |
|
81 |
79 80
|
opth |
|
82 |
81
|
necon3abii |
|
83 |
78 82
|
sylib |
|
84 |
72 73 74 83
|
syl3anc |
|
85 |
|
simp1lr |
|
86 |
|
simp1rr |
|
87 |
86
|
3adant1l |
|
88 |
|
simp2rr |
|
89 |
|
simp3r |
|
90 |
|
simp3 |
|
91 |
|
ovex |
|
92 |
|
ovex |
|
93 |
91 92
|
opth |
|
94 |
90 93
|
sylib |
|
95 |
|
simprl |
|
96 |
|
simpll |
|
97 |
96
|
fveq2d |
|
98 |
79 80
|
op1st |
|
99 |
97 98
|
eqtrdi |
|
100 |
99
|
oveq1d |
|
101 |
|
simplr |
|
102 |
101
|
fveq2d |
|
103 |
|
vex |
|
104 |
|
vex |
|
105 |
103 104
|
op1st |
|
106 |
102 105
|
eqtrdi |
|
107 |
106
|
oveq1d |
|
108 |
95 100 107
|
3eqtr3d |
|
109 |
|
simprr |
|
110 |
96
|
fveq2d |
|
111 |
79 80
|
op2nd |
|
112 |
110 111
|
eqtrdi |
|
113 |
112
|
oveq1d |
|
114 |
101
|
fveq2d |
|
115 |
103 104
|
op2nd |
|
116 |
114 115
|
eqtrdi |
|
117 |
116
|
oveq1d |
|
118 |
109 113 117
|
3eqtr3d |
|
119 |
108 118
|
jca |
|
120 |
119
|
ex |
|
121 |
120
|
3adant3 |
|
122 |
94 121
|
mpd |
|
123 |
73 72 89 122
|
syl3anc |
|
124 |
123
|
simpld |
|
125 |
123
|
simprd |
|
126 |
58 61 63 65 67 69 71 84 85 87 88 124 125
|
pellexlem6 |
|
127 |
126
|
3exp |
|
128 |
127
|
exlimdvv |
|
129 |
55 128
|
syl5bi |
|
130 |
129
|
ex |
|
131 |
130
|
exlimdvv |
|
132 |
54 131
|
syl5bi |
|
133 |
132
|
impd |
|
134 |
53 133
|
sylan2i |
|
135 |
134
|
rexlimdvv |
|
136 |
135
|
imp |
|
137 |
136
|
adantlrr |
|
138 |
41 137
|
mpdan |
|
139 |
|
pellexlem5 |
|
140 |
138 139
|
r19.29a |
|