Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
|
2 |
1
|
3ad2ant2 |
|
3 |
2
|
sqcld |
|
4 |
|
nncn |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
nncn |
|
7 |
6
|
3ad2ant3 |
|
8 |
7
|
sqcld |
|
9 |
5 8
|
mulcld |
|
10 |
3 9
|
subeq0ad |
|
11 |
|
nnne0 |
|
12 |
11
|
3ad2ant3 |
|
13 |
|
sqne0 |
|
14 |
7 13
|
syl |
|
15 |
12 14
|
mpbird |
|
16 |
3 5 8 15
|
divmul3d |
|
17 |
|
sqdiv |
|
18 |
17
|
fveq2d |
|
19 |
2 7 12 18
|
syl3anc |
|
20 |
|
nnre |
|
21 |
20
|
3ad2ant2 |
|
22 |
|
nnre |
|
23 |
22
|
3ad2ant3 |
|
24 |
21 23 12
|
redivcld |
|
25 |
|
nnnn0 |
|
26 |
25
|
nn0ge0d |
|
27 |
26
|
3ad2ant2 |
|
28 |
|
nngt0 |
|
29 |
28
|
3ad2ant3 |
|
30 |
|
divge0 |
|
31 |
21 27 23 29 30
|
syl22anc |
|
32 |
24 31
|
sqrtsqd |
|
33 |
19 32
|
eqtr3d |
|
34 |
|
nnq |
|
35 |
34
|
3ad2ant2 |
|
36 |
|
nnq |
|
37 |
36
|
3ad2ant3 |
|
38 |
|
qdivcl |
|
39 |
35 37 12 38
|
syl3anc |
|
40 |
33 39
|
eqeltrd |
|
41 |
|
fveq2 |
|
42 |
41
|
eleq1d |
|
43 |
40 42
|
syl5ibcom |
|
44 |
16 43
|
sylbird |
|
45 |
10 44
|
sylbid |
|
46 |
45
|
necon3bd |
|
47 |
46
|
imp |
|