Metamath Proof Explorer


Theorem pellexlem2

Description: Lemma for pellex . Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014)

Ref Expression
Assertion pellexlem2 D A B A B D < B 2 A 2 D B 2 < 1 + 2 D

Proof

Step Hyp Ref Expression
1 simpl3 D A B A B D < B 2 B
2 1 nnred D A B A B D < B 2 B
3 2 resqcld D A B A B D < B 2 B 2
4 2 sqge0d D A B A B D < B 2 0 B 2
5 3 4 absidd D A B A B D < B 2 B 2 = B 2
6 5 eqcomd D A B A B D < B 2 B 2 = B 2
7 6 oveq2d D A B A B D < B 2 A 2 D B 2 B 2 = A 2 D B 2 B 2
8 simpl2 D A B A B D < B 2 A
9 8 nncnd D A B A B D < B 2 A
10 9 sqcld D A B A B D < B 2 A 2
11 simpl1 D A B A B D < B 2 D
12 11 nncnd D A B A B D < B 2 D
13 1 nncnd D A B A B D < B 2 B
14 13 sqcld D A B A B D < B 2 B 2
15 12 14 mulcld D A B A B D < B 2 D B 2
16 10 15 subcld D A B A B D < B 2 A 2 D B 2
17 1 nnne0d D A B A B D < B 2 B 0
18 sqne0 B B 2 0 B 0
19 18 biimpar B B 0 B 2 0
20 13 17 19 syl2anc D A B A B D < B 2 B 2 0
21 16 14 20 absdivd D A B A B D < B 2 A 2 D B 2 B 2 = A 2 D B 2 B 2
22 7 21 eqtr4d D A B A B D < B 2 A 2 D B 2 B 2 = A 2 D B 2 B 2
23 22 oveq2d D A B A B D < B 2 B 2 A 2 D B 2 B 2 = B 2 A 2 D B 2 B 2
24 16 abscld D A B A B D < B 2 A 2 D B 2
25 24 recnd D A B A B D < B 2 A 2 D B 2
26 25 14 20 divcan2d D A B A B D < B 2 B 2 A 2 D B 2 B 2 = A 2 D B 2
27 10 15 14 20 divsubdird D A B A B D < B 2 A 2 D B 2 B 2 = A 2 B 2 D B 2 B 2
28 9 13 17 sqdivd D A B A B D < B 2 A B 2 = A 2 B 2
29 28 eqcomd D A B A B D < B 2 A 2 B 2 = A B 2
30 11 nnred D A B A B D < B 2 D
31 11 nnnn0d D A B A B D < B 2 D 0
32 31 nn0ge0d D A B A B D < B 2 0 D
33 remsqsqrt D 0 D D D = D
34 30 32 33 syl2anc D A B A B D < B 2 D D = D
35 30 32 resqrtcld D A B A B D < B 2 D
36 35 recnd D A B A B D < B 2 D
37 36 sqvald D A B A B D < B 2 D 2 = D D
38 12 14 20 divcan4d D A B A B D < B 2 D B 2 B 2 = D
39 34 37 38 3eqtr4rd D A B A B D < B 2 D B 2 B 2 = D 2
40 29 39 oveq12d D A B A B D < B 2 A 2 B 2 D B 2 B 2 = A B 2 D 2
41 9 13 17 divcld D A B A B D < B 2 A B
42 subsq A B D A B 2 D 2 = A B + D A B D
43 41 36 42 syl2anc D A B A B D < B 2 A B 2 D 2 = A B + D A B D
44 41 36 addcld D A B A B D < B 2 A B + D
45 8 nnred D A B A B D < B 2 A
46 45 1 nndivred D A B A B D < B 2 A B
47 46 35 resubcld D A B A B D < B 2 A B D
48 47 recnd D A B A B D < B 2 A B D
49 44 48 mulcomd D A B A B D < B 2 A B + D A B D = A B D A B + D
50 43 49 eqtrd D A B A B D < B 2 A B 2 D 2 = A B D A B + D
51 27 40 50 3eqtrd D A B A B D < B 2 A 2 D B 2 B 2 = A B D A B + D
52 51 fveq2d D A B A B D < B 2 A 2 D B 2 B 2 = A B D A B + D
53 52 oveq2d D A B A B D < B 2 B 2 A 2 D B 2 B 2 = B 2 A B D A B + D
54 23 26 53 3eqtr3d D A B A B D < B 2 A 2 D B 2 = B 2 A B D A B + D
55 48 44 absmuld D A B A B D < B 2 A B D A B + D = A B D A B + D
56 55 oveq2d D A B A B D < B 2 B 2 A B D A B + D = B 2 A B D A B + D
57 48 abscld D A B A B D < B 2 A B D
58 44 abscld D A B A B D < B 2 A B + D
59 57 58 remulcld D A B A B D < B 2 A B D A B + D
60 3 59 remulcld D A B A B D < B 2 B 2 A B D A B + D
61 2nn0 2 0
62 61 nn0negzi 2
63 62 a1i D A B A B D < B 2 2
64 2 17 63 reexpclzd D A B A B D < B 2 B 2
65 64 58 remulcld D A B A B D < B 2 B 2 A B + D
66 3 65 remulcld D A B A B D < B 2 B 2 B 2 A B + D
67 1red D A B A B D < B 2 1
68 2re 2
69 68 a1i D A B A B D < B 2 2
70 69 35 remulcld D A B A B D < B 2 2 D
71 67 70 readdcld D A B A B D < B 2 1 + 2 D
72 simpr D A B A B D < B 2 A B D < B 2
73 8 nngt0d D A B A B D < B 2 0 < A
74 1 nngt0d D A B A B D < B 2 0 < B
75 45 2 73 74 divgt0d D A B A B D < B 2 0 < A B
76 11 nngt0d D A B A B D < B 2 0 < D
77 sqrtgt0 D 0 < D 0 < D
78 30 76 77 syl2anc D A B A B D < B 2 0 < D
79 46 35 75 78 addgt0d D A B A B D < B 2 0 < A B + D
80 79 gt0ne0d D A B A B D < B 2 A B + D 0
81 absgt0 A B + D A B + D 0 0 < A B + D
82 81 biimpa A B + D A B + D 0 0 < A B + D
83 44 80 82 syl2anc D A B A B D < B 2 0 < A B + D
84 ltmul1 A B D B 2 A B + D 0 < A B + D A B D < B 2 A B D A B + D < B 2 A B + D
85 57 64 58 83 84 syl112anc D A B A B D < B 2 A B D < B 2 A B D A B + D < B 2 A B + D
86 72 85 mpbid D A B A B D < B 2 A B D A B + D < B 2 A B + D
87 2 17 sqgt0d D A B A B D < B 2 0 < B 2
88 ltmul2 A B D A B + D B 2 A B + D B 2 0 < B 2 A B D A B + D < B 2 A B + D B 2 A B D A B + D < B 2 B 2 A B + D
89 59 65 3 87 88 syl112anc D A B A B D < B 2 A B D A B + D < B 2 A B + D B 2 A B D A B + D < B 2 B 2 A B + D
90 86 89 mpbid D A B A B D < B 2 B 2 A B D A B + D < B 2 B 2 A B + D
91 13 17 63 expclzd D A B A B D < B 2 B 2
92 58 recnd D A B A B D < B 2 A B + D
93 mulass B 2 B 2 A B + D B 2 B 2 A B + D = B 2 B 2 A B + D
94 93 eqcomd B 2 B 2 A B + D B 2 B 2 A B + D = B 2 B 2 A B + D
95 14 91 92 94 syl3anc D A B A B D < B 2 B 2 B 2 A B + D = B 2 B 2 A B + D
96 expneg B 2 0 B 2 = 1 B 2
97 13 61 96 sylancl D A B A B D < B 2 B 2 = 1 B 2
98 97 oveq2d D A B A B D < B 2 B 2 B 2 = B 2 1 B 2
99 14 20 recidd D A B A B D < B 2 B 2 1 B 2 = 1
100 98 99 eqtrd D A B A B D < B 2 B 2 B 2 = 1
101 100 oveq1d D A B A B D < B 2 B 2 B 2 A B + D = 1 A B + D
102 92 mulid2d D A B A B D < B 2 1 A B + D = A B + D
103 95 101 102 3eqtrd D A B A B D < B 2 B 2 B 2 A B + D = A B + D
104 41 36 addcomd D A B A B D < B 2 A B + D = D + A B
105 ppncan D D A B D + D + A B D = D + A B
106 105 eqcomd D D A B D + A B = D + D + A B D
107 36 36 41 106 syl3anc D A B A B D < B 2 D + A B = D + D + A B D
108 36 36 addcld D A B A B D < B 2 D + D
109 108 48 addcomd D A B A B D < B 2 D + D + A B D = A B D + D + D
110 2times D 2 D = D + D
111 110 eqcomd D D + D = 2 D
112 36 111 syl D A B A B D < B 2 D + D = 2 D
113 112 oveq2d D A B A B D < B 2 A B D + D + D = A B - D + 2 D
114 109 113 eqtrd D A B A B D < B 2 D + D + A B D = A B - D + 2 D
115 104 107 114 3eqtrd D A B A B D < B 2 A B + D = A B - D + 2 D
116 115 fveq2d D A B A B D < B 2 A B + D = A B - D + 2 D
117 47 70 readdcld D A B A B D < B 2 A B - D + 2 D
118 117 recnd D A B A B D < B 2 A B - D + 2 D
119 118 abscld D A B A B D < B 2 A B - D + 2 D
120 70 recnd D A B A B D < B 2 2 D
121 120 abscld D A B A B D < B 2 2 D
122 57 121 readdcld D A B A B D < B 2 A B D + 2 D
123 48 120 abstrid D A B A B D < B 2 A B - D + 2 D A B D + 2 D
124 0le2 0 2
125 124 a1i D A B A B D < B 2 0 2
126 30 32 sqrtge0d D A B A B D < B 2 0 D
127 69 35 125 126 mulge0d D A B A B D < B 2 0 2 D
128 70 127 absidd D A B A B D < B 2 2 D = 2 D
129 128 oveq2d D A B A B D < B 2 A B D + 2 D = A B D + 2 D
130 1 nnsqcld D A B A B D < B 2 B 2
131 130 nnge1d D A B A B D < B 2 1 B 2
132 0lt1 0 < 1
133 132 a1i D A B A B D < B 2 0 < 1
134 lerec 1 0 < 1 B 2 0 < B 2 1 B 2 1 B 2 1 1
135 67 133 3 87 134 syl22anc D A B A B D < B 2 1 B 2 1 B 2 1 1
136 131 135 mpbid D A B A B D < B 2 1 B 2 1 1
137 1div1e1 1 1 = 1
138 136 137 breqtrdi D A B A B D < B 2 1 B 2 1
139 97 138 eqbrtrd D A B A B D < B 2 B 2 1
140 57 64 67 72 139 ltletrd D A B A B D < B 2 A B D < 1
141 57 67 140 ltled D A B A B D < B 2 A B D 1
142 57 67 70 141 leadd1dd D A B A B D < B 2 A B D + 2 D 1 + 2 D
143 129 142 eqbrtrd D A B A B D < B 2 A B D + 2 D 1 + 2 D
144 119 122 71 123 143 letrd D A B A B D < B 2 A B - D + 2 D 1 + 2 D
145 116 144 eqbrtrd D A B A B D < B 2 A B + D 1 + 2 D
146 103 145 eqbrtrd D A B A B D < B 2 B 2 B 2 A B + D 1 + 2 D
147 60 66 71 90 146 ltletrd D A B A B D < B 2 B 2 A B D A B + D < 1 + 2 D
148 56 147 eqbrtrd D A B A B D < B 2 B 2 A B D A B + D < 1 + 2 D
149 54 148 eqbrtrd D A B A B D < B 2 A 2 D B 2 < 1 + 2 D