Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
|
2 |
1
|
nnred |
|
3 |
2
|
resqcld |
|
4 |
2
|
sqge0d |
|
5 |
3 4
|
absidd |
|
6 |
5
|
eqcomd |
|
7 |
6
|
oveq2d |
|
8 |
|
simpl2 |
|
9 |
8
|
nncnd |
|
10 |
9
|
sqcld |
|
11 |
|
simpl1 |
|
12 |
11
|
nncnd |
|
13 |
1
|
nncnd |
|
14 |
13
|
sqcld |
|
15 |
12 14
|
mulcld |
|
16 |
10 15
|
subcld |
|
17 |
1
|
nnne0d |
|
18 |
|
sqne0 |
|
19 |
18
|
biimpar |
|
20 |
13 17 19
|
syl2anc |
|
21 |
16 14 20
|
absdivd |
|
22 |
7 21
|
eqtr4d |
|
23 |
22
|
oveq2d |
|
24 |
16
|
abscld |
|
25 |
24
|
recnd |
|
26 |
25 14 20
|
divcan2d |
|
27 |
10 15 14 20
|
divsubdird |
|
28 |
9 13 17
|
sqdivd |
|
29 |
28
|
eqcomd |
|
30 |
11
|
nnred |
|
31 |
11
|
nnnn0d |
|
32 |
31
|
nn0ge0d |
|
33 |
|
remsqsqrt |
|
34 |
30 32 33
|
syl2anc |
|
35 |
30 32
|
resqrtcld |
|
36 |
35
|
recnd |
|
37 |
36
|
sqvald |
|
38 |
12 14 20
|
divcan4d |
|
39 |
34 37 38
|
3eqtr4rd |
|
40 |
29 39
|
oveq12d |
|
41 |
9 13 17
|
divcld |
|
42 |
|
subsq |
|
43 |
41 36 42
|
syl2anc |
|
44 |
41 36
|
addcld |
|
45 |
8
|
nnred |
|
46 |
45 1
|
nndivred |
|
47 |
46 35
|
resubcld |
|
48 |
47
|
recnd |
|
49 |
44 48
|
mulcomd |
|
50 |
43 49
|
eqtrd |
|
51 |
27 40 50
|
3eqtrd |
|
52 |
51
|
fveq2d |
|
53 |
52
|
oveq2d |
|
54 |
23 26 53
|
3eqtr3d |
|
55 |
48 44
|
absmuld |
|
56 |
55
|
oveq2d |
|
57 |
48
|
abscld |
|
58 |
44
|
abscld |
|
59 |
57 58
|
remulcld |
|
60 |
3 59
|
remulcld |
|
61 |
|
2nn0 |
|
62 |
61
|
nn0negzi |
|
63 |
62
|
a1i |
|
64 |
2 17 63
|
reexpclzd |
|
65 |
64 58
|
remulcld |
|
66 |
3 65
|
remulcld |
|
67 |
|
1red |
|
68 |
|
2re |
|
69 |
68
|
a1i |
|
70 |
69 35
|
remulcld |
|
71 |
67 70
|
readdcld |
|
72 |
|
simpr |
|
73 |
8
|
nngt0d |
|
74 |
1
|
nngt0d |
|
75 |
45 2 73 74
|
divgt0d |
|
76 |
11
|
nngt0d |
|
77 |
|
sqrtgt0 |
|
78 |
30 76 77
|
syl2anc |
|
79 |
46 35 75 78
|
addgt0d |
|
80 |
79
|
gt0ne0d |
|
81 |
|
absgt0 |
|
82 |
81
|
biimpa |
|
83 |
44 80 82
|
syl2anc |
|
84 |
|
ltmul1 |
|
85 |
57 64 58 83 84
|
syl112anc |
|
86 |
72 85
|
mpbid |
|
87 |
2 17
|
sqgt0d |
|
88 |
|
ltmul2 |
|
89 |
59 65 3 87 88
|
syl112anc |
|
90 |
86 89
|
mpbid |
|
91 |
13 17 63
|
expclzd |
|
92 |
58
|
recnd |
|
93 |
|
mulass |
|
94 |
93
|
eqcomd |
|
95 |
14 91 92 94
|
syl3anc |
|
96 |
|
expneg |
|
97 |
13 61 96
|
sylancl |
|
98 |
97
|
oveq2d |
|
99 |
14 20
|
recidd |
|
100 |
98 99
|
eqtrd |
|
101 |
100
|
oveq1d |
|
102 |
92
|
mulid2d |
|
103 |
95 101 102
|
3eqtrd |
|
104 |
41 36
|
addcomd |
|
105 |
|
ppncan |
|
106 |
105
|
eqcomd |
|
107 |
36 36 41 106
|
syl3anc |
|
108 |
36 36
|
addcld |
|
109 |
108 48
|
addcomd |
|
110 |
|
2times |
|
111 |
110
|
eqcomd |
|
112 |
36 111
|
syl |
|
113 |
112
|
oveq2d |
|
114 |
109 113
|
eqtrd |
|
115 |
104 107 114
|
3eqtrd |
|
116 |
115
|
fveq2d |
|
117 |
47 70
|
readdcld |
|
118 |
117
|
recnd |
|
119 |
118
|
abscld |
|
120 |
70
|
recnd |
|
121 |
120
|
abscld |
|
122 |
57 121
|
readdcld |
|
123 |
48 120
|
abstrid |
|
124 |
|
0le2 |
|
125 |
124
|
a1i |
|
126 |
30 32
|
sqrtge0d |
|
127 |
69 35 125 126
|
mulge0d |
|
128 |
70 127
|
absidd |
|
129 |
128
|
oveq2d |
|
130 |
1
|
nnsqcld |
|
131 |
130
|
nnge1d |
|
132 |
|
0lt1 |
|
133 |
132
|
a1i |
|
134 |
|
lerec |
|
135 |
67 133 3 87 134
|
syl22anc |
|
136 |
131 135
|
mpbid |
|
137 |
|
1div1e1 |
|
138 |
136 137
|
breqtrdi |
|
139 |
97 138
|
eqbrtrd |
|
140 |
57 64 67 72 139
|
ltletrd |
|
141 |
57 67 140
|
ltled |
|
142 |
57 67 70 141
|
leadd1dd |
|
143 |
129 142
|
eqbrtrd |
|
144 |
119 122 71 123 143
|
letrd |
|
145 |
116 144
|
eqbrtrd |
|
146 |
103 145
|
eqbrtrd |
|
147 |
60 66 71 90 146
|
ltletrd |
|
148 |
56 147
|
eqbrtrd |
|
149 |
54 148
|
eqbrtrd |
|