Step |
Hyp |
Ref |
Expression |
1 |
|
nnex |
|
2 |
1 1
|
xpex |
|
3 |
|
opabssxp |
|
4 |
2 3
|
ssexi |
|
5 |
|
simprl |
|
6 |
|
simprrl |
|
7 |
|
qgt0numnn |
|
8 |
5 6 7
|
syl2anc |
|
9 |
|
qdencl |
|
10 |
5 9
|
syl |
|
11 |
8 10
|
jca |
|
12 |
|
simpll |
|
13 |
|
simplr |
|
14 |
|
pellexlem1 |
|
15 |
12 8 10 13 14
|
syl31anc |
|
16 |
|
simprrr |
|
17 |
|
qeqnumdivden |
|
18 |
17
|
oveq1d |
|
19 |
18
|
fveq2d |
|
20 |
19
|
breq1d |
|
21 |
5 20
|
syl |
|
22 |
16 21
|
mpbid |
|
23 |
|
pellexlem2 |
|
24 |
12 8 10 22 23
|
syl31anc |
|
25 |
11 15 24
|
jca32 |
|
26 |
25
|
ex |
|
27 |
|
breq2 |
|
28 |
|
fvoveq1 |
|
29 |
|
fveq2 |
|
30 |
29
|
oveq1d |
|
31 |
28 30
|
breq12d |
|
32 |
27 31
|
anbi12d |
|
33 |
32
|
elrab |
|
34 |
|
fvex |
|
35 |
|
fvex |
|
36 |
|
eleq1 |
|
37 |
36
|
anbi1d |
|
38 |
|
oveq1 |
|
39 |
38
|
oveq1d |
|
40 |
39
|
neeq1d |
|
41 |
39
|
fveq2d |
|
42 |
41
|
breq1d |
|
43 |
40 42
|
anbi12d |
|
44 |
37 43
|
anbi12d |
|
45 |
|
eleq1 |
|
46 |
45
|
anbi2d |
|
47 |
|
oveq1 |
|
48 |
47
|
oveq2d |
|
49 |
48
|
oveq2d |
|
50 |
49
|
neeq1d |
|
51 |
49
|
fveq2d |
|
52 |
51
|
breq1d |
|
53 |
50 52
|
anbi12d |
|
54 |
46 53
|
anbi12d |
|
55 |
34 35 44 54
|
opelopab |
|
56 |
26 33 55
|
3imtr4g |
|
57 |
|
ssrab2 |
|
58 |
|
simprl |
|
59 |
57 58
|
sselid |
|
60 |
|
simprr |
|
61 |
57 60
|
sselid |
|
62 |
34 35
|
opth |
|
63 |
|
simprl |
|
64 |
|
simprr |
|
65 |
63 64
|
oveq12d |
|
66 |
|
simpll |
|
67 |
66 17
|
syl |
|
68 |
|
simplr |
|
69 |
|
qeqnumdivden |
|
70 |
68 69
|
syl |
|
71 |
65 67 70
|
3eqtr4d |
|
72 |
71
|
ex |
|
73 |
62 72
|
syl5bi |
|
74 |
|
fveq2 |
|
75 |
|
fveq2 |
|
76 |
74 75
|
opeq12d |
|
77 |
73 76
|
impbid1 |
|
78 |
59 61 77
|
syl2anc |
|
79 |
78
|
ex |
|
80 |
56 79
|
dom2d |
|
81 |
4 80
|
mpi |
|