Step |
Hyp |
Ref |
Expression |
1 |
|
pellexlem4 |
|
2 |
|
fzfi |
|
3 |
|
diffi |
|
4 |
2 3
|
mp1i |
|
5 |
|
elopab |
|
6 |
|
fveq2 |
|
7 |
6
|
oveq1d |
|
8 |
|
fveq2 |
|
9 |
8
|
oveq1d |
|
10 |
9
|
oveq2d |
|
11 |
7 10
|
oveq12d |
|
12 |
|
vex |
|
13 |
|
vex |
|
14 |
12 13
|
op1st |
|
15 |
14
|
oveq1i |
|
16 |
12 13
|
op2nd |
|
17 |
16
|
oveq1i |
|
18 |
17
|
oveq2i |
|
19 |
15 18
|
oveq12i |
|
20 |
11 19
|
eqtrdi |
|
21 |
20
|
ad2antrl |
|
22 |
|
simprrl |
|
23 |
|
simpl |
|
24 |
|
simprr |
|
25 |
24
|
ad2antll |
|
26 |
|
nnz |
|
27 |
26
|
ad2antrr |
|
28 |
|
zsqcl |
|
29 |
27 28
|
syl |
|
30 |
|
nnz |
|
31 |
30
|
ad2antrl |
|
32 |
|
simplr |
|
33 |
32
|
nnzd |
|
34 |
|
zsqcl |
|
35 |
33 34
|
syl |
|
36 |
31 35
|
zmulcld |
|
37 |
29 36
|
zsubcld |
|
38 |
|
1re |
|
39 |
|
2re |
|
40 |
|
nnre |
|
41 |
40
|
ad2antrl |
|
42 |
|
nnnn0 |
|
43 |
42
|
ad2antrl |
|
44 |
43
|
nn0ge0d |
|
45 |
41 44
|
resqrtcld |
|
46 |
|
remulcl |
|
47 |
39 45 46
|
sylancr |
|
48 |
|
readdcl |
|
49 |
38 47 48
|
sylancr |
|
50 |
49
|
flcld |
|
51 |
50
|
znegcld |
|
52 |
37
|
zred |
|
53 |
50
|
zred |
|
54 |
|
nn0abscl |
|
55 |
37 54
|
syl |
|
56 |
55
|
nn0zd |
|
57 |
56
|
zred |
|
58 |
|
peano2re |
|
59 |
53 58
|
syl |
|
60 |
|
simprr |
|
61 |
|
flltp1 |
|
62 |
49 61
|
syl |
|
63 |
57 49 59 60 62
|
lttrd |
|
64 |
|
zleltp1 |
|
65 |
56 50 64
|
syl2anc |
|
66 |
63 65
|
mpbird |
|
67 |
|
absle |
|
68 |
67
|
biimpa |
|
69 |
52 53 66 68
|
syl21anc |
|
70 |
|
elfz |
|
71 |
70
|
biimpar |
|
72 |
37 51 50 69 71
|
syl31anc |
|
73 |
22 23 25 72
|
syl12anc |
|
74 |
73
|
adantlr |
|
75 |
|
simprl |
|
76 |
75
|
ad2antll |
|
77 |
|
eldifsn |
|
78 |
74 76 77
|
sylanbrc |
|
79 |
21 78
|
eqeltrd |
|
80 |
79
|
ex |
|
81 |
80
|
exlimdvv |
|
82 |
5 81
|
syl5bi |
|
83 |
82
|
imp |
|
84 |
1 4 83
|
fiphp3d |
|
85 |
|
eldif |
|
86 |
|
elfzelz |
|
87 |
|
simp2 |
|
88 |
|
velsn |
|
89 |
88
|
biimpri |
|
90 |
89
|
necon3bi |
|
91 |
90
|
3ad2ant3 |
|
92 |
87 91
|
jca |
|
93 |
92
|
3exp |
|
94 |
86 93
|
syl5 |
|
95 |
94
|
impd |
|
96 |
85 95
|
syl5bi |
|
97 |
|
simp2l |
|
98 |
|
simp2r |
|
99 |
|
nnex |
|
100 |
99 99
|
xpex |
|
101 |
|
opabssxp |
|
102 |
|
ssdomg |
|
103 |
100 101 102
|
mp2 |
|
104 |
|
xpnnen |
|
105 |
|
domentr |
|
106 |
103 104 105
|
mp2an |
|
107 |
|
ensym |
|
108 |
107
|
3ad2ant3 |
|
109 |
100 101
|
ssexi |
|
110 |
|
fveq2 |
|
111 |
110
|
oveq1d |
|
112 |
|
fveq2 |
|
113 |
112
|
oveq1d |
|
114 |
113
|
oveq2d |
|
115 |
111 114
|
oveq12d |
|
116 |
115
|
eqeq1d |
|
117 |
116
|
elrab |
|
118 |
|
simprl |
|
119 |
|
simprrl |
|
120 |
|
fveq2 |
|
121 |
120
|
oveq1d |
|
122 |
|
fveq2 |
|
123 |
122
|
oveq1d |
|
124 |
123
|
oveq2d |
|
125 |
121 124
|
oveq12d |
|
126 |
125 19
|
eqtr2di |
|
127 |
126
|
ad2antrl |
|
128 |
|
simplr |
|
129 |
127 128
|
eqtrd |
|
130 |
118 119 129
|
jca32 |
|
131 |
130
|
ex |
|
132 |
131
|
2eximdv |
|
133 |
|
elopab |
|
134 |
|
elopab |
|
135 |
132 133 134
|
3imtr4g |
|
136 |
135
|
expimpd |
|
137 |
136
|
ancomsd |
|
138 |
117 137
|
syl5bi |
|
139 |
138
|
ssrdv |
|
140 |
139
|
3adant3 |
|
141 |
|
ssdomg |
|
142 |
109 140 141
|
mpsyl |
|
143 |
|
endomtr |
|
144 |
108 142 143
|
syl2anc |
|
145 |
|
sbth |
|
146 |
106 144 145
|
sylancr |
|
147 |
97 98 146
|
jca32 |
|
148 |
147
|
3exp |
|
149 |
96 148
|
syld |
|
150 |
149
|
impd |
|
151 |
150
|
reximdv2 |
|
152 |
84 151
|
mpd |
|