Step |
Hyp |
Ref |
Expression |
1 |
|
pell14qrrp |
|
2 |
|
pellfundrp |
|
3 |
2
|
adantr |
|
4 |
|
pellfundne1 |
|
5 |
4
|
adantr |
|
6 |
|
reglogcl |
|
7 |
1 3 5 6
|
syl3anc |
|
8 |
7
|
flcld |
|
9 |
|
pell14qrre |
|
10 |
9
|
recnd |
|
11 |
3 8
|
rpexpcld |
|
12 |
11
|
rpcnd |
|
13 |
8
|
znegcld |
|
14 |
3 13
|
rpexpcld |
|
15 |
14
|
rpcnd |
|
16 |
14
|
rpne0d |
|
17 |
|
simpl |
|
18 |
|
pell1qrss14 |
|
19 |
|
pellfundex |
|
20 |
18 19
|
sseldd |
|
21 |
20
|
adantr |
|
22 |
|
pell14qrexpcl |
|
23 |
17 21 13 22
|
syl3anc |
|
24 |
|
pell14qrmulcl |
|
25 |
23 24
|
mpd3an3 |
|
26 |
|
1rp |
|
27 |
26
|
a1i |
|
28 |
|
modge0 |
|
29 |
7 27 28
|
syl2anc |
|
30 |
7
|
recnd |
|
31 |
8
|
zcnd |
|
32 |
30 31
|
negsubd |
|
33 |
|
modfrac |
|
34 |
7 33
|
syl |
|
35 |
32 34
|
eqtr4d |
|
36 |
29 35
|
breqtrrd |
|
37 |
|
reglog1 |
|
38 |
3 5 37
|
syl2anc |
|
39 |
|
reglogmul |
|
40 |
1 14 3 5 39
|
syl112anc |
|
41 |
|
reglogexpbas |
|
42 |
13 3 5 41
|
syl12anc |
|
43 |
42
|
oveq2d |
|
44 |
40 43
|
eqtrd |
|
45 |
36 38 44
|
3brtr4d |
|
46 |
1 14
|
rpmulcld |
|
47 |
|
pellfundgt1 |
|
48 |
47
|
adantr |
|
49 |
|
reglogleb |
|
50 |
27 46 3 48 49
|
syl22anc |
|
51 |
45 50
|
mpbird |
|
52 |
|
modlt |
|
53 |
7 27 52
|
syl2anc |
|
54 |
35 53
|
eqbrtrd |
|
55 |
|
reglogbas |
|
56 |
3 5 55
|
syl2anc |
|
57 |
54 44 56
|
3brtr4d |
|
58 |
|
reglogltb |
|
59 |
46 3 3 48 58
|
syl22anc |
|
60 |
57 59
|
mpbird |
|
61 |
|
pellfund14gap |
|
62 |
17 25 51 60 61
|
syl112anc |
|
63 |
31
|
negidd |
|
64 |
63
|
oveq2d |
|
65 |
3
|
rpcnd |
|
66 |
3
|
rpne0d |
|
67 |
|
expaddz |
|
68 |
65 66 8 13 67
|
syl22anc |
|
69 |
65
|
exp0d |
|
70 |
64 68 69
|
3eqtr3rd |
|
71 |
62 70
|
eqtrd |
|
72 |
10 12 15 16 71
|
mulcan2ad |
|
73 |
|
oveq2 |
|
74 |
73
|
rspceeqv |
|
75 |
8 72 74
|
syl2anc |
|