Metamath Proof Explorer


Theorem pellfund14

Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfund14 D A Pell14QR D x A = PellFund D x

Proof

Step Hyp Ref Expression
1 pell14qrrp D A Pell14QR D A +
2 pellfundrp D PellFund D +
3 2 adantr D A Pell14QR D PellFund D +
4 pellfundne1 D PellFund D 1
5 4 adantr D A Pell14QR D PellFund D 1
6 reglogcl A + PellFund D + PellFund D 1 log A log PellFund D
7 1 3 5 6 syl3anc D A Pell14QR D log A log PellFund D
8 7 flcld D A Pell14QR D log A log PellFund D
9 pell14qrre D A Pell14QR D A
10 9 recnd D A Pell14QR D A
11 3 8 rpexpcld D A Pell14QR D PellFund D log A log PellFund D +
12 11 rpcnd D A Pell14QR D PellFund D log A log PellFund D
13 8 znegcld D A Pell14QR D log A log PellFund D
14 3 13 rpexpcld D A Pell14QR D PellFund D log A log PellFund D +
15 14 rpcnd D A Pell14QR D PellFund D log A log PellFund D
16 14 rpne0d D A Pell14QR D PellFund D log A log PellFund D 0
17 simpl D A Pell14QR D D
18 pell1qrss14 D Pell1QR D Pell14QR D
19 pellfundex D PellFund D Pell1QR D
20 18 19 sseldd D PellFund D Pell14QR D
21 20 adantr D A Pell14QR D PellFund D Pell14QR D
22 pell14qrexpcl D PellFund D Pell14QR D log A log PellFund D PellFund D log A log PellFund D Pell14QR D
23 17 21 13 22 syl3anc D A Pell14QR D PellFund D log A log PellFund D Pell14QR D
24 pell14qrmulcl D A Pell14QR D PellFund D log A log PellFund D Pell14QR D A PellFund D log A log PellFund D Pell14QR D
25 23 24 mpd3an3 D A Pell14QR D A PellFund D log A log PellFund D Pell14QR D
26 1rp 1 +
27 26 a1i D A Pell14QR D 1 +
28 modge0 log A log PellFund D 1 + 0 log A log PellFund D mod 1
29 7 27 28 syl2anc D A Pell14QR D 0 log A log PellFund D mod 1
30 7 recnd D A Pell14QR D log A log PellFund D
31 8 zcnd D A Pell14QR D log A log PellFund D
32 30 31 negsubd D A Pell14QR D log A log PellFund D + log A log PellFund D = log A log PellFund D log A log PellFund D
33 modfrac log A log PellFund D log A log PellFund D mod 1 = log A log PellFund D log A log PellFund D
34 7 33 syl D A Pell14QR D log A log PellFund D mod 1 = log A log PellFund D log A log PellFund D
35 32 34 eqtr4d D A Pell14QR D log A log PellFund D + log A log PellFund D = log A log PellFund D mod 1
36 29 35 breqtrrd D A Pell14QR D 0 log A log PellFund D + log A log PellFund D
37 reglog1 PellFund D + PellFund D 1 log 1 log PellFund D = 0
38 3 5 37 syl2anc D A Pell14QR D log 1 log PellFund D = 0
39 reglogmul A + PellFund D log A log PellFund D + PellFund D + PellFund D 1 log A PellFund D log A log PellFund D log PellFund D = log A log PellFund D + log PellFund D log A log PellFund D log PellFund D
40 1 14 3 5 39 syl112anc D A Pell14QR D log A PellFund D log A log PellFund D log PellFund D = log A log PellFund D + log PellFund D log A log PellFund D log PellFund D
41 reglogexpbas log A log PellFund D PellFund D + PellFund D 1 log PellFund D log A log PellFund D log PellFund D = log A log PellFund D
42 13 3 5 41 syl12anc D A Pell14QR D log PellFund D log A log PellFund D log PellFund D = log A log PellFund D
43 42 oveq2d D A Pell14QR D log A log PellFund D + log PellFund D log A log PellFund D log PellFund D = log A log PellFund D + log A log PellFund D
44 40 43 eqtrd D A Pell14QR D log A PellFund D log A log PellFund D log PellFund D = log A log PellFund D + log A log PellFund D
45 36 38 44 3brtr4d D A Pell14QR D log 1 log PellFund D log A PellFund D log A log PellFund D log PellFund D
46 1 14 rpmulcld D A Pell14QR D A PellFund D log A log PellFund D +
47 pellfundgt1 D 1 < PellFund D
48 47 adantr D A Pell14QR D 1 < PellFund D
49 reglogleb 1 + A PellFund D log A log PellFund D + PellFund D + 1 < PellFund D 1 A PellFund D log A log PellFund D log 1 log PellFund D log A PellFund D log A log PellFund D log PellFund D
50 27 46 3 48 49 syl22anc D A Pell14QR D 1 A PellFund D log A log PellFund D log 1 log PellFund D log A PellFund D log A log PellFund D log PellFund D
51 45 50 mpbird D A Pell14QR D 1 A PellFund D log A log PellFund D
52 modlt log A log PellFund D 1 + log A log PellFund D mod 1 < 1
53 7 27 52 syl2anc D A Pell14QR D log A log PellFund D mod 1 < 1
54 35 53 eqbrtrd D A Pell14QR D log A log PellFund D + log A log PellFund D < 1
55 reglogbas PellFund D + PellFund D 1 log PellFund D log PellFund D = 1
56 3 5 55 syl2anc D A Pell14QR D log PellFund D log PellFund D = 1
57 54 44 56 3brtr4d D A Pell14QR D log A PellFund D log A log PellFund D log PellFund D < log PellFund D log PellFund D
58 reglogltb A PellFund D log A log PellFund D + PellFund D + PellFund D + 1 < PellFund D A PellFund D log A log PellFund D < PellFund D log A PellFund D log A log PellFund D log PellFund D < log PellFund D log PellFund D
59 46 3 3 48 58 syl22anc D A Pell14QR D A PellFund D log A log PellFund D < PellFund D log A PellFund D log A log PellFund D log PellFund D < log PellFund D log PellFund D
60 57 59 mpbird D A Pell14QR D A PellFund D log A log PellFund D < PellFund D
61 pellfund14gap D A PellFund D log A log PellFund D Pell14QR D 1 A PellFund D log A log PellFund D A PellFund D log A log PellFund D < PellFund D A PellFund D log A log PellFund D = 1
62 17 25 51 60 61 syl112anc D A Pell14QR D A PellFund D log A log PellFund D = 1
63 31 negidd D A Pell14QR D log A log PellFund D + log A log PellFund D = 0
64 63 oveq2d D A Pell14QR D PellFund D log A log PellFund D + log A log PellFund D = PellFund D 0
65 3 rpcnd D A Pell14QR D PellFund D
66 3 rpne0d D A Pell14QR D PellFund D 0
67 expaddz PellFund D PellFund D 0 log A log PellFund D log A log PellFund D PellFund D log A log PellFund D + log A log PellFund D = PellFund D log A log PellFund D PellFund D log A log PellFund D
68 65 66 8 13 67 syl22anc D A Pell14QR D PellFund D log A log PellFund D + log A log PellFund D = PellFund D log A log PellFund D PellFund D log A log PellFund D
69 65 exp0d D A Pell14QR D PellFund D 0 = 1
70 64 68 69 3eqtr3rd D A Pell14QR D 1 = PellFund D log A log PellFund D PellFund D log A log PellFund D
71 62 70 eqtrd D A Pell14QR D A PellFund D log A log PellFund D = PellFund D log A log PellFund D PellFund D log A log PellFund D
72 10 12 15 16 71 mulcan2ad D A Pell14QR D A = PellFund D log A log PellFund D
73 oveq2 x = log A log PellFund D PellFund D x = PellFund D log A log PellFund D
74 73 rspceeqv log A log PellFund D A = PellFund D log A log PellFund D x A = PellFund D x
75 8 72 74 syl2anc D A Pell14QR D x A = PellFund D x