Metamath Proof Explorer


Theorem pellfund14b

Description: The positive Pell solutions are precisely the integer powers of the fundamental solution. To get the general solution set (which we will not be using), throw in a copy of Z/2Z. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfund14b DAPell14QRDxA=PellFundDx

Proof

Step Hyp Ref Expression
1 pellfund14 DAPell14QRDxA=PellFundDx
2 simpll DxA=PellFundDxD
3 pell1qrss14 DPell1QRDPell14QRD
4 pellfundex DPellFundDPell1QRD
5 3 4 sseldd DPellFundDPell14QRD
6 5 ad2antrr DxA=PellFundDxPellFundDPell14QRD
7 simplr DxA=PellFundDxx
8 pell14qrexpcl DPellFundDPell14QRDxPellFundDxPell14QRD
9 2 6 7 8 syl3anc DxA=PellFundDxPellFundDxPell14QRD
10 eleq1 A=PellFundDxAPell14QRDPellFundDxPell14QRD
11 10 adantl DxA=PellFundDxAPell14QRDPellFundDxPell14QRD
12 9 11 mpbird DxA=PellFundDxAPell14QRD
13 12 r19.29an DxA=PellFundDxAPell14QRD
14 1 13 impbida DAPell14QRDxA=PellFundDx