Metamath Proof Explorer


Theorem pellfund14b

Description: The positive Pell solutions are precisely the integer powers of the fundamental solution. To get the general solution set (which we will not be using), throw in a copy of Z/2Z. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfund14b D A Pell14QR D x A = PellFund D x

Proof

Step Hyp Ref Expression
1 pellfund14 D A Pell14QR D x A = PellFund D x
2 simpll D x A = PellFund D x D
3 pell1qrss14 D Pell1QR D Pell14QR D
4 pellfundex D PellFund D Pell1QR D
5 3 4 sseldd D PellFund D Pell14QR D
6 5 ad2antrr D x A = PellFund D x PellFund D Pell14QR D
7 simplr D x A = PellFund D x x
8 pell14qrexpcl D PellFund D Pell14QR D x PellFund D x Pell14QR D
9 2 6 7 8 syl3anc D x A = PellFund D x PellFund D x Pell14QR D
10 eleq1 A = PellFund D x A Pell14QR D PellFund D x Pell14QR D
11 10 adantl D x A = PellFund D x A Pell14QR D PellFund D x Pell14QR D
12 9 11 mpbird D x A = PellFund D x A Pell14QR D
13 12 r19.29an D x A = PellFund D x A Pell14QR D
14 1 13 impbida D A Pell14QR D x A = PellFund D x