Metamath Proof Explorer


Theorem pellfund14gap

Description: There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfund14gap D A Pell14QR D 1 A A < PellFund D A = 1

Proof

Step Hyp Ref Expression
1 simp3r D A Pell14QR D 1 A A < PellFund D A < PellFund D
2 pell14qrre D A Pell14QR D A
3 2 3adant3 D A Pell14QR D 1 A A < PellFund D A
4 pellfundre D PellFund D
5 4 3ad2ant1 D A Pell14QR D 1 A A < PellFund D PellFund D
6 3 5 ltnled D A Pell14QR D 1 A A < PellFund D A < PellFund D ¬ PellFund D A
7 1 6 mpbid D A Pell14QR D 1 A A < PellFund D ¬ PellFund D A
8 simpl1 D A Pell14QR D 1 A A < PellFund D 1 < A D
9 simpl2 D A Pell14QR D 1 A A < PellFund D 1 < A A Pell14QR D
10 simpr D A Pell14QR D 1 A A < PellFund D 1 < A 1 < A
11 pellfundlb D A Pell14QR D 1 < A PellFund D A
12 8 9 10 11 syl3anc D A Pell14QR D 1 A A < PellFund D 1 < A PellFund D A
13 7 12 mtand D A Pell14QR D 1 A A < PellFund D ¬ 1 < A
14 simp3l D A Pell14QR D 1 A A < PellFund D 1 A
15 1re 1
16 leloe 1 A 1 A 1 < A 1 = A
17 15 3 16 sylancr D A Pell14QR D 1 A A < PellFund D 1 A 1 < A 1 = A
18 14 17 mpbid D A Pell14QR D 1 A A < PellFund D 1 < A 1 = A
19 orel1 ¬ 1 < A 1 < A 1 = A 1 = A
20 13 18 19 sylc D A Pell14QR D 1 A A < PellFund D 1 = A
21 20 eqcomd D A Pell14QR D 1 A A < PellFund D A = 1