Metamath Proof Explorer


Theorem pellfundex

Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw . (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfundex D PellFund D Pell1QR D

Proof

Step Hyp Ref Expression
1 2re 2
2 pellfundre D PellFund D
3 remulcl 2 PellFund D 2 PellFund D
4 1 2 3 sylancr D 2 PellFund D
5 0red D 0
6 1red D 1
7 0lt1 0 < 1
8 7 a1i D 0 < 1
9 pellfundgt1 D 1 < PellFund D
10 5 6 2 8 9 lttrd D 0 < PellFund D
11 2 10 elrpd D PellFund D +
12 2 11 ltaddrpd D PellFund D < PellFund D + PellFund D
13 2 recnd D PellFund D
14 13 2timesd D 2 PellFund D = PellFund D + PellFund D
15 12 14 breqtrrd D PellFund D < 2 PellFund D
16 pellfundglb D 2 PellFund D PellFund D < 2 PellFund D a Pell1QR D PellFund D a a < 2 PellFund D
17 4 15 16 mpd3an23 D a Pell1QR D PellFund D a a < 2 PellFund D
18 2 adantr D a Pell1QR D PellFund D
19 pell1qrss14 D Pell1QR D Pell14QR D
20 19 sselda D a Pell1QR D a Pell14QR D
21 pell14qrre D a Pell14QR D a
22 20 21 syldan D a Pell1QR D a
23 18 22 leloed D a Pell1QR D PellFund D a PellFund D < a PellFund D = a
24 simp-4l D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a D
25 simp-4r D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a a Pell1QR D
26 simplr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a b Pell1QR D
27 simprr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a b < a
28 22 ad3antrrr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a a
29 4 ad4antr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a 2 PellFund D
30 19 ad4antr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a Pell1QR D Pell14QR D
31 30 26 sseldd D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a b Pell14QR D
32 pell14qrre D b Pell14QR D b
33 24 31 32 syl2anc D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a b
34 remulcl 2 b 2 b
35 1 33 34 sylancr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a 2 b
36 simprr D a Pell1QR D PellFund D < a a < 2 PellFund D a < 2 PellFund D
37 36 ad2antrr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a a < 2 PellFund D
38 simprl D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a PellFund D b
39 2 ad4antr D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a PellFund D
40 1 a1i D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a 2
41 2pos 0 < 2
42 41 a1i D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a 0 < 2
43 lemul2 PellFund D b 2 0 < 2 PellFund D b 2 PellFund D 2 b
44 39 33 40 42 43 syl112anc D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a PellFund D b 2 PellFund D 2 b
45 38 44 mpbid D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a 2 PellFund D 2 b
46 28 29 35 37 45 ltletrd D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a a < 2 b
47 simp1 D a Pell1QR D b Pell1QR D b < a a < 2 b D
48 19 3ad2ant1 D a Pell1QR D b Pell1QR D b < a a < 2 b Pell1QR D Pell14QR D
49 simp2l D a Pell1QR D b Pell1QR D b < a a < 2 b a Pell1QR D
50 48 49 sseldd D a Pell1QR D b Pell1QR D b < a a < 2 b a Pell14QR D
51 simp2r D a Pell1QR D b Pell1QR D b < a a < 2 b b Pell1QR D
52 48 51 sseldd D a Pell1QR D b Pell1QR D b < a a < 2 b b Pell14QR D
53 pell14qrdivcl D a Pell14QR D b Pell14QR D a b Pell14QR D
54 47 50 52 53 syl3anc D a Pell1QR D b Pell1QR D b < a a < 2 b a b Pell14QR D
55 47 52 32 syl2anc D a Pell1QR D b Pell1QR D b < a a < 2 b b
56 55 recnd D a Pell1QR D b Pell1QR D b < a a < 2 b b
57 56 mulid2d D a Pell1QR D b Pell1QR D b < a a < 2 b 1 b = b
58 simp3l D a Pell1QR D b Pell1QR D b < a a < 2 b b < a
59 57 58 eqbrtrd D a Pell1QR D b Pell1QR D b < a a < 2 b 1 b < a
60 1red D a Pell1QR D b Pell1QR D b < a a < 2 b 1
61 47 50 21 syl2anc D a Pell1QR D b Pell1QR D b < a a < 2 b a
62 pell14qrgt0 D b Pell14QR D 0 < b
63 47 52 62 syl2anc D a Pell1QR D b Pell1QR D b < a a < 2 b 0 < b
64 ltmuldiv 1 a b 0 < b 1 b < a 1 < a b
65 60 61 55 63 64 syl112anc D a Pell1QR D b Pell1QR D b < a a < 2 b 1 b < a 1 < a b
66 59 65 mpbid D a Pell1QR D b Pell1QR D b < a a < 2 b 1 < a b
67 simp3r D a Pell1QR D b Pell1QR D b < a a < 2 b a < 2 b
68 1 a1i D a Pell1QR D b Pell1QR D b < a a < 2 b 2
69 ltdivmul2 a 2 b 0 < b a b < 2 a < 2 b
70 61 68 55 63 69 syl112anc D a Pell1QR D b Pell1QR D b < a a < 2 b a b < 2 a < 2 b
71 67 70 mpbird D a Pell1QR D b Pell1QR D b < a a < 2 b a b < 2
72 simprr D a b Pell14QR D 1 < a b a b < 2 a b < 2
73 simpll D a b Pell14QR D 1 < a b a b < 2 D
74 simplr D a b Pell14QR D 1 < a b a b < 2 a b Pell14QR D
75 simprl D a b Pell14QR D 1 < a b a b < 2 1 < a b
76 pell14qrgapw D a b Pell14QR D 1 < a b 2 < a b
77 73 74 75 76 syl3anc D a b Pell14QR D 1 < a b a b < 2 2 < a b
78 pell14qrre D a b Pell14QR D a b
79 78 adantr D a b Pell14QR D 1 < a b a b < 2 a b
80 ltnsym 2 a b 2 < a b ¬ a b < 2
81 1 79 80 sylancr D a b Pell14QR D 1 < a b a b < 2 2 < a b ¬ a b < 2
82 77 81 mpd D a b Pell14QR D 1 < a b a b < 2 ¬ a b < 2
83 72 82 pm2.21dd D a b Pell14QR D 1 < a b a b < 2 PellFund D Pell1QR D
84 47 54 66 71 83 syl22anc D a Pell1QR D b Pell1QR D b < a a < 2 b PellFund D Pell1QR D
85 24 25 26 27 46 84 syl122anc D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a PellFund D Pell1QR D
86 simpll D a Pell1QR D PellFund D < a a < 2 PellFund D D
87 22 adantr D a Pell1QR D PellFund D < a a < 2 PellFund D a
88 simprl D a Pell1QR D PellFund D < a a < 2 PellFund D PellFund D < a
89 pellfundglb D a PellFund D < a b Pell1QR D PellFund D b b < a
90 86 87 88 89 syl3anc D a Pell1QR D PellFund D < a a < 2 PellFund D b Pell1QR D PellFund D b b < a
91 85 90 r19.29a D a Pell1QR D PellFund D < a a < 2 PellFund D PellFund D Pell1QR D
92 91 exp32 D a Pell1QR D PellFund D < a a < 2 PellFund D PellFund D Pell1QR D
93 simp2 D a Pell1QR D PellFund D = a a < 2 PellFund D PellFund D = a
94 simp1r D a Pell1QR D PellFund D = a a < 2 PellFund D a Pell1QR D
95 93 94 eqeltrd D a Pell1QR D PellFund D = a a < 2 PellFund D PellFund D Pell1QR D
96 95 3exp D a Pell1QR D PellFund D = a a < 2 PellFund D PellFund D Pell1QR D
97 92 96 jaod D a Pell1QR D PellFund D < a PellFund D = a a < 2 PellFund D PellFund D Pell1QR D
98 23 97 sylbid D a Pell1QR D PellFund D a a < 2 PellFund D PellFund D Pell1QR D
99 98 impd D a Pell1QR D PellFund D a a < 2 PellFund D PellFund D Pell1QR D
100 99 rexlimdva D a Pell1QR D PellFund D a a < 2 PellFund D PellFund D Pell1QR D
101 17 100 mpd D PellFund D Pell1QR D