Metamath Proof Explorer


Theorem pellfundge

Description: Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfundge D D + 1 + D PellFund D

Proof

Step Hyp Ref Expression
1 ssrab2 a Pell14QR D | 1 < a Pell14QR D
2 pell14qrre D a Pell14QR D a
3 2 ex D a Pell14QR D a
4 3 ssrdv D Pell14QR D
5 1 4 sstrid D a Pell14QR D | 1 < a
6 pell1qrss14 D Pell1QR D Pell14QR D
7 pellqrex D a Pell1QR D 1 < a
8 ssrexv Pell1QR D Pell14QR D a Pell1QR D 1 < a a Pell14QR D 1 < a
9 6 7 8 sylc D a Pell14QR D 1 < a
10 rabn0 a Pell14QR D | 1 < a a Pell14QR D 1 < a
11 9 10 sylibr D a Pell14QR D | 1 < a
12 eldifi D D
13 12 peano2nnd D D + 1
14 13 nnrpd D D + 1 +
15 14 rpsqrtcld D D + 1 +
16 15 rpred D D + 1
17 12 nnrpd D D +
18 17 rpsqrtcld D D +
19 18 rpred D D
20 16 19 readdcld D D + 1 + D
21 breq2 a = b 1 < a 1 < b
22 21 elrab b a Pell14QR D | 1 < a b Pell14QR D 1 < b
23 pell14qrgap D b Pell14QR D 1 < b D + 1 + D b
24 23 3expib D b Pell14QR D 1 < b D + 1 + D b
25 22 24 syl5bi D b a Pell14QR D | 1 < a D + 1 + D b
26 25 ralrimiv D b a Pell14QR D | 1 < a D + 1 + D b
27 infmrgelbi a Pell14QR D | 1 < a a Pell14QR D | 1 < a D + 1 + D b a Pell14QR D | 1 < a D + 1 + D b D + 1 + D sup a Pell14QR D | 1 < a <
28 5 11 20 26 27 syl31anc D D + 1 + D sup a Pell14QR D | 1 < a <
29 pellfundval D PellFund D = sup a Pell14QR D | 1 < a <
30 28 29 breqtrrd D D + 1 + D PellFund D