Metamath Proof Explorer


Theorem pellfundgt1

Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pellfundgt1 D 1 < PellFund D

Proof

Step Hyp Ref Expression
1 1red D 1
2 eldifi D D
3 2 peano2nnd D D + 1
4 3 nnrpd D D + 1 +
5 4 rpsqrtcld D D + 1 +
6 5 rpred D D + 1
7 2 nnrpd D D +
8 7 rpsqrtcld D D +
9 8 rpred D D
10 6 9 readdcld D D + 1 + D
11 pellfundre D PellFund D
12 sqrt1 1 = 1
13 12 1 eqeltrid D 1
14 13 13 readdcld D 1 + 1
15 1lt2 1 < 2
16 12 12 oveq12i 1 + 1 = 1 + 1
17 1p1e2 1 + 1 = 2
18 16 17 eqtri 1 + 1 = 2
19 15 18 breqtrri 1 < 1 + 1
20 19 a1i D 1 < 1 + 1
21 3 nnge1d D 1 D + 1
22 0le1 0 1
23 22 a1i D 0 1
24 2 nnred D D
25 peano2re D D + 1
26 24 25 syl D D + 1
27 3 nnnn0d D D + 1 0
28 27 nn0ge0d D 0 D + 1
29 1 23 26 28 sqrtled D 1 D + 1 1 D + 1
30 21 29 mpbid D 1 D + 1
31 2 nnge1d D 1 D
32 2 nnnn0d D D 0
33 32 nn0ge0d D 0 D
34 1 23 24 33 sqrtled D 1 D 1 D
35 31 34 mpbid D 1 D
36 13 13 6 9 30 35 le2addd D 1 + 1 D + 1 + D
37 1 14 10 20 36 ltletrd D 1 < D + 1 + D
38 pellfundge D D + 1 + D PellFund D
39 1 10 11 37 38 ltletrd D 1 < PellFund D