Metamath Proof Explorer


Theorem pellfundlb

Description: A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014) (Proof shortened by AV, 15-Sep-2020)

Ref Expression
Assertion pellfundlb D A Pell14QR D 1 < A PellFund D A

Proof

Step Hyp Ref Expression
1 pellfundval D PellFund D = sup a Pell14QR D | 1 < a <
2 1 3ad2ant1 D A Pell14QR D 1 < A PellFund D = sup a Pell14QR D | 1 < a <
3 ssrab2 a Pell14QR D | 1 < a Pell14QR D
4 pell14qrre D d Pell14QR D d
5 4 ex D d Pell14QR D d
6 5 ssrdv D Pell14QR D
7 3 6 sstrid D a Pell14QR D | 1 < a
8 7 3ad2ant1 D A Pell14QR D 1 < A a Pell14QR D | 1 < a
9 1re 1
10 breq2 a = c 1 < a 1 < c
11 10 elrab c a Pell14QR D | 1 < a c Pell14QR D 1 < c
12 pell14qrre D c Pell14QR D c
13 ltle 1 c 1 < c 1 c
14 9 12 13 sylancr D c Pell14QR D 1 < c 1 c
15 14 expimpd D c Pell14QR D 1 < c 1 c
16 11 15 syl5bi D c a Pell14QR D | 1 < a 1 c
17 16 ralrimiv D c a Pell14QR D | 1 < a 1 c
18 17 3ad2ant1 D A Pell14QR D 1 < A c a Pell14QR D | 1 < a 1 c
19 breq1 b = 1 b c 1 c
20 19 ralbidv b = 1 c a Pell14QR D | 1 < a b c c a Pell14QR D | 1 < a 1 c
21 20 rspcev 1 c a Pell14QR D | 1 < a 1 c b c a Pell14QR D | 1 < a b c
22 9 18 21 sylancr D A Pell14QR D 1 < A b c a Pell14QR D | 1 < a b c
23 simp2 D A Pell14QR D 1 < A A Pell14QR D
24 simp3 D A Pell14QR D 1 < A 1 < A
25 breq2 a = A 1 < a 1 < A
26 25 elrab A a Pell14QR D | 1 < a A Pell14QR D 1 < A
27 23 24 26 sylanbrc D A Pell14QR D 1 < A A a Pell14QR D | 1 < a
28 infrelb a Pell14QR D | 1 < a b c a Pell14QR D | 1 < a b c A a Pell14QR D | 1 < a sup a Pell14QR D | 1 < a < A
29 8 22 27 28 syl3anc D A Pell14QR D 1 < A sup a Pell14QR D | 1 < a < A
30 2 29 eqbrtrd D A Pell14QR D 1 < A PellFund D A