Metamath Proof Explorer


Theorem pellfundval

Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion pellfundval D PellFund D = sup x Pell14QR D | 1 < x <

Proof

Step Hyp Ref Expression
1 fveq2 a = D Pell14QR a = Pell14QR D
2 rabeq Pell14QR a = Pell14QR D x Pell14QR a | 1 < x = x Pell14QR D | 1 < x
3 1 2 syl a = D x Pell14QR a | 1 < x = x Pell14QR D | 1 < x
4 3 infeq1d a = D sup x Pell14QR a | 1 < x < = sup x Pell14QR D | 1 < x <
5 df-pellfund PellFund = a sup x Pell14QR a | 1 < x <
6 ltso < Or
7 6 infex sup x Pell14QR D | 1 < x < V
8 4 5 7 fvmpt D PellFund D = sup x Pell14QR D | 1 < x <