Metamath Proof Explorer


Theorem perfdvf

Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis perfdvf.1 K = TopOpen fld
Assertion perfdvf K 𝑡 S Perf F S : dom F S

Proof

Step Hyp Ref Expression
1 perfdvf.1 K = TopOpen fld
2 df-dv D = s 𝒫 , f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x
3 2 dmmpossx dom D s 𝒫 s × 𝑝𝑚 s
4 simpl S F dom D K 𝑡 S Perf S F dom D
5 3 4 sselid S F dom D K 𝑡 S Perf S F s 𝒫 s × 𝑝𝑚 s
6 oveq2 s = S 𝑝𝑚 s = 𝑝𝑚 S
7 6 opeliunxp2 S F s 𝒫 s × 𝑝𝑚 s S 𝒫 F 𝑝𝑚 S
8 5 7 sylib S F dom D K 𝑡 S Perf S 𝒫 F 𝑝𝑚 S
9 8 simprd S F dom D K 𝑡 S Perf F 𝑝𝑚 S
10 cnex V
11 8 simpld S F dom D K 𝑡 S Perf S 𝒫
12 elpm2g V S 𝒫 F 𝑝𝑚 S F : dom F dom F S
13 10 11 12 sylancr S F dom D K 𝑡 S Perf F 𝑝𝑚 S F : dom F dom F S
14 9 13 mpbid S F dom D K 𝑡 S Perf F : dom F dom F S
15 14 simpld S F dom D K 𝑡 S Perf F : dom F
16 15 adantr S F dom D K 𝑡 S Perf x int K 𝑡 S dom F F : dom F
17 3 sseli S F dom D S F s 𝒫 s × 𝑝𝑚 s
18 17 7 sylib S F dom D S 𝒫 F 𝑝𝑚 S
19 18 simprd S F dom D F 𝑝𝑚 S
20 18 simpld S F dom D S 𝒫
21 10 20 12 sylancr S F dom D F 𝑝𝑚 S F : dom F dom F S
22 19 21 mpbid S F dom D F : dom F dom F S
23 22 simprd S F dom D dom F S
24 23 adantr S F dom D K 𝑡 S Perf dom F S
25 11 elpwid S F dom D K 𝑡 S Perf S
26 24 25 sstrd S F dom D K 𝑡 S Perf dom F
27 26 adantr S F dom D K 𝑡 S Perf x int K 𝑡 S dom F dom F
28 1 cnfldtopon K TopOn
29 resttopon K TopOn S K 𝑡 S TopOn S
30 28 25 29 sylancr S F dom D K 𝑡 S Perf K 𝑡 S TopOn S
31 topontop K 𝑡 S TopOn S K 𝑡 S Top
32 30 31 syl S F dom D K 𝑡 S Perf K 𝑡 S Top
33 toponuni K 𝑡 S TopOn S S = K 𝑡 S
34 30 33 syl S F dom D K 𝑡 S Perf S = K 𝑡 S
35 24 34 sseqtrd S F dom D K 𝑡 S Perf dom F K 𝑡 S
36 eqid K 𝑡 S = K 𝑡 S
37 36 ntrss2 K 𝑡 S Top dom F K 𝑡 S int K 𝑡 S dom F dom F
38 32 35 37 syl2anc S F dom D K 𝑡 S Perf int K 𝑡 S dom F dom F
39 38 sselda S F dom D K 𝑡 S Perf x int K 𝑡 S dom F x dom F
40 16 27 39 dvlem S F dom D K 𝑡 S Perf x int K 𝑡 S dom F z dom F x F z F x z x
41 40 fmpttd S F dom D K 𝑡 S Perf x int K 𝑡 S dom F z dom F x F z F x z x : dom F x
42 27 ssdifssd S F dom D K 𝑡 S Perf x int K 𝑡 S dom F dom F x
43 36 ntrss3 K 𝑡 S Top dom F K 𝑡 S int K 𝑡 S dom F K 𝑡 S
44 32 35 43 syl2anc S F dom D K 𝑡 S Perf int K 𝑡 S dom F K 𝑡 S
45 44 34 sseqtrrd S F dom D K 𝑡 S Perf int K 𝑡 S dom F S
46 restabs K TopOn int K 𝑡 S dom F S S 𝒫 K 𝑡 S 𝑡 int K 𝑡 S dom F = K 𝑡 int K 𝑡 S dom F
47 28 45 11 46 mp3an2i S F dom D K 𝑡 S Perf K 𝑡 S 𝑡 int K 𝑡 S dom F = K 𝑡 int K 𝑡 S dom F
48 simpr S F dom D K 𝑡 S Perf K 𝑡 S Perf
49 36 ntropn K 𝑡 S Top dom F K 𝑡 S int K 𝑡 S dom F K 𝑡 S
50 32 35 49 syl2anc S F dom D K 𝑡 S Perf int K 𝑡 S dom F K 𝑡 S
51 eqid K 𝑡 S 𝑡 int K 𝑡 S dom F = K 𝑡 S 𝑡 int K 𝑡 S dom F
52 36 51 perfopn K 𝑡 S Perf int K 𝑡 S dom F K 𝑡 S K 𝑡 S 𝑡 int K 𝑡 S dom F Perf
53 48 50 52 syl2anc S F dom D K 𝑡 S Perf K 𝑡 S 𝑡 int K 𝑡 S dom F Perf
54 47 53 eqeltrrd S F dom D K 𝑡 S Perf K 𝑡 int K 𝑡 S dom F Perf
55 1 cnfldtop K Top
56 45 25 sstrd S F dom D K 𝑡 S Perf int K 𝑡 S dom F
57 28 toponunii = K
58 eqid K 𝑡 int K 𝑡 S dom F = K 𝑡 int K 𝑡 S dom F
59 57 58 restperf K Top int K 𝑡 S dom F K 𝑡 int K 𝑡 S dom F Perf int K 𝑡 S dom F limPt K int K 𝑡 S dom F
60 55 56 59 sylancr S F dom D K 𝑡 S Perf K 𝑡 int K 𝑡 S dom F Perf int K 𝑡 S dom F limPt K int K 𝑡 S dom F
61 54 60 mpbid S F dom D K 𝑡 S Perf int K 𝑡 S dom F limPt K int K 𝑡 S dom F
62 57 lpss3 K Top dom F int K 𝑡 S dom F dom F limPt K int K 𝑡 S dom F limPt K dom F
63 55 26 38 62 mp3an2i S F dom D K 𝑡 S Perf limPt K int K 𝑡 S dom F limPt K dom F
64 61 63 sstrd S F dom D K 𝑡 S Perf int K 𝑡 S dom F limPt K dom F
65 64 sselda S F dom D K 𝑡 S Perf x int K 𝑡 S dom F x limPt K dom F
66 57 lpdifsn K Top dom F x limPt K dom F x limPt K dom F x
67 55 27 66 sylancr S F dom D K 𝑡 S Perf x int K 𝑡 S dom F x limPt K dom F x limPt K dom F x
68 65 67 mpbid S F dom D K 𝑡 S Perf x int K 𝑡 S dom F x limPt K dom F x
69 41 42 68 1 limcmo S F dom D K 𝑡 S Perf x int K 𝑡 S dom F * y y z dom F x F z F x z x lim x
70 69 ex S F dom D K 𝑡 S Perf x int K 𝑡 S dom F * y y z dom F x F z F x z x lim x
71 moanimv * y x int K 𝑡 S dom F y z dom F x F z F x z x lim x x int K 𝑡 S dom F * y y z dom F x F z F x z x lim x
72 70 71 sylibr S F dom D K 𝑡 S Perf * y x int K 𝑡 S dom F y z dom F x F z F x z x lim x
73 eqid K 𝑡 S = K 𝑡 S
74 eqid z dom F x F z F x z x = z dom F x F z F x z x
75 73 1 74 25 15 24 eldv S F dom D K 𝑡 S Perf x F S y x int K 𝑡 S dom F y z dom F x F z F x z x lim x
76 75 mobidv S F dom D K 𝑡 S Perf * y x F S y * y x int K 𝑡 S dom F y z dom F x F z F x z x lim x
77 72 76 mpbird S F dom D K 𝑡 S Perf * y x F S y
78 77 alrimiv S F dom D K 𝑡 S Perf x * y x F S y
79 reldv Rel F S
80 dffun6 Fun F S Rel F S x * y x F S y
81 79 80 mpbiran Fun F S x * y x F S y
82 78 81 sylibr S F dom D K 𝑡 S Perf Fun F S
83 82 funfnd S F dom D K 𝑡 S Perf F S Fn dom F S
84 vex y V
85 84 elrn y ran F S x x F S y
86 25 15 24 dvcl S F dom D K 𝑡 S Perf x F S y y
87 86 ex S F dom D K 𝑡 S Perf x F S y y
88 87 exlimdv S F dom D K 𝑡 S Perf x x F S y y
89 85 88 syl5bi S F dom D K 𝑡 S Perf y ran F S y
90 89 ssrdv S F dom D K 𝑡 S Perf ran F S
91 df-f F S : dom F S F S Fn dom F S ran F S
92 83 90 91 sylanbrc S F dom D K 𝑡 S Perf F S : dom F S
93 92 ex S F dom D K 𝑡 S Perf F S : dom F S
94 f0 :
95 df-ov S D F = D S F
96 ndmfv ¬ S F dom D D S F =
97 95 96 syl5eq ¬ S F dom D S D F =
98 97 dmeqd ¬ S F dom D dom F S = dom
99 dm0 dom =
100 98 99 eqtrdi ¬ S F dom D dom F S =
101 97 100 feq12d ¬ S F dom D F S : dom F S :
102 94 101 mpbiri ¬ S F dom D F S : dom F S
103 102 a1d ¬ S F dom D K 𝑡 S Perf F S : dom F S
104 93 103 pm2.61i K 𝑡 S Perf F S : dom F S