Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
2prm |
|
3 |
|
simpll |
|
4 |
|
pcelnn |
|
5 |
2 3 4
|
sylancr |
|
6 |
1 5
|
mpbird |
|
7 |
6
|
nnzd |
|
8 |
7
|
peano2zd |
|
9 |
|
pcdvds |
|
10 |
2 3 9
|
sylancr |
|
11 |
|
2nn |
|
12 |
6
|
nnnn0d |
|
13 |
|
nnexpcl |
|
14 |
11 12 13
|
sylancr |
|
15 |
|
nndivdvds |
|
16 |
3 14 15
|
syl2anc |
|
17 |
10 16
|
mpbid |
|
18 |
|
pcndvds2 |
|
19 |
2 3 18
|
sylancr |
|
20 |
|
simpr |
|
21 |
|
nncn |
|
22 |
21
|
ad2antrr |
|
23 |
14
|
nncnd |
|
24 |
14
|
nnne0d |
|
25 |
22 23 24
|
divcan2d |
|
26 |
25
|
oveq2d |
|
27 |
25
|
oveq2d |
|
28 |
20 26 27
|
3eqtr4d |
|
29 |
6 17 19 28
|
perfectlem2 |
|
30 |
29
|
simprd |
|
31 |
29
|
simpld |
|
32 |
30 31
|
eqeltrrd |
|
33 |
6
|
nncnd |
|
34 |
|
ax-1cn |
|
35 |
|
pncan |
|
36 |
33 34 35
|
sylancl |
|
37 |
36
|
eqcomd |
|
38 |
37
|
oveq2d |
|
39 |
38 30
|
oveq12d |
|
40 |
25 39
|
eqtr3d |
|
41 |
|
oveq2 |
|
42 |
41
|
oveq1d |
|
43 |
42
|
eleq1d |
|
44 |
|
oveq1 |
|
45 |
44
|
oveq2d |
|
46 |
45 42
|
oveq12d |
|
47 |
46
|
eqeq2d |
|
48 |
43 47
|
anbi12d |
|
49 |
48
|
rspcev |
|
50 |
8 32 40 49
|
syl12anc |
|
51 |
50
|
ex |
|
52 |
|
perfect1 |
|
53 |
|
2cn |
|
54 |
|
mersenne |
|
55 |
|
prmnn |
|
56 |
54 55
|
syl |
|
57 |
|
expm1t |
|
58 |
53 56 57
|
sylancr |
|
59 |
|
nnm1nn0 |
|
60 |
56 59
|
syl |
|
61 |
|
expcl |
|
62 |
53 60 61
|
sylancr |
|
63 |
|
mulcom |
|
64 |
62 53 63
|
sylancl |
|
65 |
58 64
|
eqtrd |
|
66 |
65
|
oveq1d |
|
67 |
|
2cnd |
|
68 |
|
prmnn |
|
69 |
68
|
adantl |
|
70 |
69
|
nncnd |
|
71 |
67 62 70
|
mulassd |
|
72 |
52 66 71
|
3eqtrd |
|
73 |
|
oveq2 |
|
74 |
|
oveq2 |
|
75 |
73 74
|
eqeq12d |
|
76 |
72 75
|
syl5ibrcom |
|
77 |
76
|
impr |
|
78 |
77
|
rexlimiva |
|
79 |
51 78
|
impbid1 |
|