Step |
Hyp |
Ref |
Expression |
1 |
|
perfectlem.1 |
|
2 |
|
perfectlem.2 |
|
3 |
|
perfectlem.3 |
|
4 |
|
perfectlem.4 |
|
5 |
|
2nn |
|
6 |
1
|
nnnn0d |
|
7 |
|
peano2nn0 |
|
8 |
6 7
|
syl |
|
9 |
|
nnexpcl |
|
10 |
5 8 9
|
sylancr |
|
11 |
|
2re |
|
12 |
1
|
peano2nnd |
|
13 |
|
1lt2 |
|
14 |
13
|
a1i |
|
15 |
|
expgt1 |
|
16 |
11 12 14 15
|
mp3an2i |
|
17 |
|
1nn |
|
18 |
|
nnsub |
|
19 |
17 10 18
|
sylancr |
|
20 |
16 19
|
mpbid |
|
21 |
10
|
nnzd |
|
22 |
|
peano2zm |
|
23 |
21 22
|
syl |
|
24 |
|
1nn0 |
|
25 |
|
sgmnncl |
|
26 |
24 2 25
|
sylancr |
|
27 |
26
|
nnzd |
|
28 |
|
dvdsmul1 |
|
29 |
23 27 28
|
syl2anc |
|
30 |
|
2cn |
|
31 |
|
expp1 |
|
32 |
30 6 31
|
sylancr |
|
33 |
|
nnexpcl |
|
34 |
5 6 33
|
sylancr |
|
35 |
34
|
nncnd |
|
36 |
|
mulcom |
|
37 |
35 30 36
|
sylancl |
|
38 |
32 37
|
eqtrd |
|
39 |
38
|
oveq1d |
|
40 |
30
|
a1i |
|
41 |
2
|
nncnd |
|
42 |
40 35 41
|
mulassd |
|
43 |
|
ax-1cn |
|
44 |
43
|
a1i |
|
45 |
|
2prm |
|
46 |
2
|
nnzd |
|
47 |
|
coprm |
|
48 |
45 46 47
|
sylancr |
|
49 |
3 48
|
mpbid |
|
50 |
|
2z |
|
51 |
|
rpexp1i |
|
52 |
50 46 6 51
|
mp3an2i |
|
53 |
49 52
|
mpd |
|
54 |
|
sgmmul |
|
55 |
44 34 2 53 54
|
syl13anc |
|
56 |
1
|
nncnd |
|
57 |
|
pncan |
|
58 |
56 43 57
|
sylancl |
|
59 |
58
|
oveq2d |
|
60 |
59
|
oveq2d |
|
61 |
|
1sgm2ppw |
|
62 |
12 61
|
syl |
|
63 |
60 62
|
eqtr3d |
|
64 |
63
|
oveq1d |
|
65 |
55 4 64
|
3eqtr3d |
|
66 |
39 42 65
|
3eqtrd |
|
67 |
29 66
|
breqtrrd |
|
68 |
23 21
|
gcdcomd |
|
69 |
|
iddvdsexp |
|
70 |
50 12 69
|
sylancr |
|
71 |
|
n2dvds1 |
|
72 |
50
|
a1i |
|
73 |
|
1zzd |
|
74 |
72 21 73
|
3jca |
|
75 |
|
dvdssub2 |
|
76 |
74 75
|
sylan |
|
77 |
71 76
|
mtbiri |
|
78 |
77
|
ex |
|
79 |
70 78
|
mt2d |
|
80 |
|
coprm |
|
81 |
45 23 80
|
sylancr |
|
82 |
79 81
|
mpbid |
|
83 |
|
rpexp1i |
|
84 |
50 23 8 83
|
mp3an2i |
|
85 |
82 84
|
mpd |
|
86 |
68 85
|
eqtrd |
|
87 |
|
coprmdvds |
|
88 |
23 21 46 87
|
syl3anc |
|
89 |
67 86 88
|
mp2and |
|
90 |
|
nndivdvds |
|
91 |
2 20 90
|
syl2anc |
|
92 |
89 91
|
mpbid |
|
93 |
10 20 92
|
3jca |
|