Metamath Proof Explorer


Theorem perfi

Description: Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion perfi J Perf P X ¬ P J

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 isperf3 J Perf J Top x X ¬ x J
3 2 simprbi J Perf x X ¬ x J
4 sneq x = P x = P
5 4 eleq1d x = P x J P J
6 5 notbid x = P ¬ x J ¬ P J
7 6 rspccva x X ¬ x J P X ¬ P J
8 3 7 sylan J Perf P X ¬ P J