Metamath Proof Explorer


Theorem permnn

Description: The number of permutations of N - R objects from a collection of N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007)

Ref Expression
Assertion permnn R 0 N N ! R !

Proof

Step Hyp Ref Expression
1 elfznn0 R 0 N R 0
2 1 faccld R 0 N R !
3 fznn0sub R 0 N N R 0
4 3 faccld R 0 N N R !
5 4 2 nnmulcld R 0 N N R ! R !
6 elfz3nn0 R 0 N N 0
7 faccl N 0 N !
8 7 nncnd N 0 N !
9 6 8 syl R 0 N N !
10 4 nncnd R 0 N N R !
11 2 nncnd R 0 N R !
12 facne0 R 0 R ! 0
13 1 12 syl R 0 N R ! 0
14 10 11 13 divcan4d R 0 N N R ! R ! R ! = N R !
15 14 4 eqeltrd R 0 N N R ! R ! R !
16 bcval2 R 0 N ( N R) = N ! N R ! R !
17 bccl2 R 0 N ( N R)
18 16 17 eqeltrrd R 0 N N ! N R ! R !
19 nndivtr R ! N R ! R ! N ! N R ! R ! R ! N ! N R ! R ! N ! R !
20 2 5 9 15 18 19 syl32anc R 0 N N ! R !