Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|
2 |
|
isperp.d |
|
3 |
|
isperp.i |
|
4 |
|
isperp.l |
|
5 |
|
isperp.g |
|
6 |
|
isperp.a |
|
7 |
|
isperp.b |
|
8 |
|
perpcom.1 |
|
9 |
|
incom |
|
10 |
9
|
a1i |
|
11 |
|
ralcom |
|
12 |
|
eqid |
|
13 |
5
|
ad3antrrr |
|
14 |
6
|
ad3antrrr |
|
15 |
|
simplrr |
|
16 |
1 4 3 13 14 15
|
tglnpt |
|
17 |
|
simpllr |
|
18 |
17
|
elin1d |
|
19 |
1 4 3 13 14 18
|
tglnpt |
|
20 |
7
|
ad3antrrr |
|
21 |
|
simplrl |
|
22 |
1 4 3 13 20 21
|
tglnpt |
|
23 |
|
simpr |
|
24 |
1 2 3 4 12 13 16 19 22 23
|
ragcom |
|
25 |
5
|
ad3antrrr |
|
26 |
7
|
ad3antrrr |
|
27 |
|
simplrl |
|
28 |
1 4 3 25 26 27
|
tglnpt |
|
29 |
6
|
ad3antrrr |
|
30 |
|
simpllr |
|
31 |
30
|
elin1d |
|
32 |
1 4 3 25 29 31
|
tglnpt |
|
33 |
|
simplrr |
|
34 |
1 4 3 25 29 33
|
tglnpt |
|
35 |
|
simpr |
|
36 |
1 2 3 4 12 25 28 32 34 35
|
ragcom |
|
37 |
24 36
|
impbida |
|
38 |
37
|
2ralbidva |
|
39 |
11 38
|
syl5bb |
|
40 |
10 39
|
rexeqbidva |
|
41 |
1 2 3 4 5 6 7
|
isperp |
|
42 |
1 2 3 4 5 7 6
|
isperp |
|
43 |
40 41 42
|
3bitr4d |
|
44 |
8 43
|
mpbid |
|