Metamath Proof Explorer


Theorem perpdrag

Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
perpdrag.1 φ A D
perpdrag.2 φ B D
perpdrag.3 φ C P
perpdrag.4 φ D 𝒢 G B L C
Assertion perpdrag φ ⟨“ ABC ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 perpdrag.1 φ A D
7 perpdrag.2 φ B D
8 perpdrag.3 φ C P
9 perpdrag.4 φ D 𝒢 G B L C
10 5 ad2antrr φ x D A x G 𝒢 Tarski
11 9 ad2antrr φ x D A x D 𝒢 G B L C
12 4 10 11 perpln1 φ x D A x D ran L
13 6 ad2antrr φ x D A x A D
14 1 4 3 10 12 13 tglnpt φ x D A x A P
15 simplr φ x D A x x D
16 1 4 3 10 12 15 tglnpt φ x D A x x P
17 7 ad2antrr φ x D A x B D
18 simpr φ x D A x A x
19 1 3 4 10 14 16 18 18 12 13 15 tglinethru φ x D A x D = A L x
20 17 19 eleqtrd φ x D A x B A L x
21 8 ad2antrr φ x D A x C P
22 19 11 eqbrtrrd φ x D A x A L x 𝒢 G B L C
23 1 2 3 4 10 14 16 20 21 22 perprag φ x D A x ⟨“ ABC ”⟩ 𝒢 G
24 4 5 9 perpln1 φ D ran L
25 1 3 4 5 24 6 tglnpt2 φ x D A x
26 23 25 r19.29a φ ⟨“ ABC ”⟩ 𝒢 G