Metamath Proof Explorer


Theorem perpdragALT

Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
perpdrag.1 φAD
perpdrag.2 φBD
perpdrag.3 φCP
perpdrag.4 φD𝒢GBLC
Assertion perpdragALT φ⟨“ABC”⟩𝒢G

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 perpdrag.1 φAD
7 perpdrag.2 φBD
8 perpdrag.3 φCP
9 perpdrag.4 φD𝒢GBLC
10 eqidd φA=BA=A
11 simpr φA=BA=B
12 eqidd φA=BC=C
13 10 11 12 s3eqd φA=B⟨“AAC”⟩=⟨“ABC”⟩
14 eqid pInv𝒢G=pInv𝒢G
15 4 5 9 perpln1 φDranL
16 1 4 3 5 15 6 tglnpt φAP
17 1 2 3 4 14 5 8 16 8 ragtrivb φ⟨“CAA”⟩𝒢G
18 1 2 3 4 14 5 8 16 16 17 ragcom φ⟨“AAC”⟩𝒢G
19 18 adantr φA=B⟨“AAC”⟩𝒢G
20 13 19 eqeltrrd φA=B⟨“ABC”⟩𝒢G
21 5 adantr φABG𝒢Tarski
22 16 adantr φABAP
23 1 4 3 5 15 7 tglnpt φBP
24 23 adantr φABBP
25 7 adantr φABBD
26 simpr φABAB
27 15 adantr φABDranL
28 6 adantr φABAD
29 1 3 4 21 22 24 26 26 27 28 25 tglinethru φABD=ALB
30 25 29 eleqtrd φABBALB
31 8 adantr φABCP
32 9 adantr φABD𝒢GBLC
33 29 32 eqbrtrrd φABALB𝒢GBLC
34 1 2 3 4 21 22 24 30 31 33 perprag φAB⟨“ABC”⟩𝒢G
35 20 34 pm2.61dane φ⟨“ABC”⟩𝒢G