Metamath Proof Explorer


Theorem perpdragALT

Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses colperpex.p P = Base G
colperpex.d - ˙ = dist G
colperpex.i I = Itv G
colperpex.l L = Line 𝒢 G
colperpex.g φ G 𝒢 Tarski
perpdrag.1 φ A D
perpdrag.2 φ B D
perpdrag.3 φ C P
perpdrag.4 φ D 𝒢 G B L C
Assertion perpdragALT φ ⟨“ ABC ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 colperpex.p P = Base G
2 colperpex.d - ˙ = dist G
3 colperpex.i I = Itv G
4 colperpex.l L = Line 𝒢 G
5 colperpex.g φ G 𝒢 Tarski
6 perpdrag.1 φ A D
7 perpdrag.2 φ B D
8 perpdrag.3 φ C P
9 perpdrag.4 φ D 𝒢 G B L C
10 eqidd φ A = B A = A
11 simpr φ A = B A = B
12 eqidd φ A = B C = C
13 10 11 12 s3eqd φ A = B ⟨“ AAC ”⟩ = ⟨“ ABC ”⟩
14 eqid pInv 𝒢 G = pInv 𝒢 G
15 4 5 9 perpln1 φ D ran L
16 1 4 3 5 15 6 tglnpt φ A P
17 1 2 3 4 14 5 8 16 8 ragtrivb φ ⟨“ CAA ”⟩ 𝒢 G
18 1 2 3 4 14 5 8 16 16 17 ragcom φ ⟨“ AAC ”⟩ 𝒢 G
19 18 adantr φ A = B ⟨“ AAC ”⟩ 𝒢 G
20 13 19 eqeltrrd φ A = B ⟨“ ABC ”⟩ 𝒢 G
21 5 adantr φ A B G 𝒢 Tarski
22 16 adantr φ A B A P
23 1 4 3 5 15 7 tglnpt φ B P
24 23 adantr φ A B B P
25 7 adantr φ A B B D
26 simpr φ A B A B
27 15 adantr φ A B D ran L
28 6 adantr φ A B A D
29 1 3 4 21 22 24 26 26 27 28 25 tglinethru φ A B D = A L B
30 25 29 eleqtrd φ A B B A L B
31 8 adantr φ A B C P
32 9 adantr φ A B D 𝒢 G B L C
33 29 32 eqbrtrrd φ A B A L B 𝒢 G B L C
34 1 2 3 4 21 22 24 30 31 33 perprag φ A B ⟨“ ABC ”⟩ 𝒢 G
35 20 34 pm2.61dane φ ⟨“ ABC ”⟩ 𝒢 G