Metamath Proof Explorer


Theorem perpneq

Description: Two perpendicular lines are different. Theorem 8.14 of Schwabhauser p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
isperp.b φ B ran L
perpcom.1 φ A 𝒢 G B
Assertion perpneq φ A B

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 isperp.b φ B ran L
8 perpcom.1 φ A 𝒢 G B
9 5 adantr φ x A B G 𝒢 Tarski
10 9 ad5antr φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v G 𝒢 Tarski
11 5 ad5antr φ x A B u A x u v B x v G 𝒢 Tarski
12 6 ad5antr φ x A B u A x u v B x v A ran L
13 simpr φ x A B x A B
14 13 elin1d φ x A B x A
15 14 ad4antr φ x A B u A x u v B x v x A
16 1 4 3 11 12 15 tglnpt φ x A B u A x u v B x v x P
17 16 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v x P
18 7 ad5antr φ x A B u A x u v B x v B ran L
19 simplr φ x A B u A x u v B x v v B
20 1 4 3 11 18 19 tglnpt φ x A B u A x u v B x v v P
21 20 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v v P
22 simp-4r φ x A B u A x u v B x v u A
23 1 4 3 11 12 22 tglnpt φ x A B u A x u v B x v u P
24 23 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v u P
25 eqid pInv 𝒢 G = pInv 𝒢 G
26 simp-4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v u A
27 simplr φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v v B
28 simp-5r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v y A z B ⟨“ yxz ”⟩ 𝒢 G
29 id y = u y = u
30 eqidd y = u x = x
31 eqidd y = u z = z
32 29 30 31 s3eqd y = u ⟨“ yxz ”⟩ = ⟨“ uxz ”⟩
33 32 eleq1d y = u ⟨“ yxz ”⟩ 𝒢 G ⟨“ uxz ”⟩ 𝒢 G
34 eqidd z = v u = u
35 eqidd z = v x = x
36 id z = v z = v
37 34 35 36 s3eqd z = v ⟨“ uxz ”⟩ = ⟨“ uxv ”⟩
38 37 eleq1d z = v ⟨“ uxz ”⟩ 𝒢 G ⟨“ uxv ”⟩ 𝒢 G
39 33 38 rspc2va u A v B y A z B ⟨“ yxz ”⟩ 𝒢 G ⟨“ uxv ”⟩ 𝒢 G
40 26 27 28 39 syl21anc φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v ⟨“ uxv ”⟩ 𝒢 G
41 simpllr φ x A B u A x u v B x v x u
42 41 necomd φ x A B u A x u v B x v u x
43 42 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v u x
44 simpr φ x A B u A x u v B x v x v
45 44 necomd φ x A B u A x u v B x v v x
46 45 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v v x
47 1 2 3 4 25 10 24 17 21 40 43 46 ragncol φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v ¬ v u L x u = x
48 1 4 3 10 24 17 21 47 ncolrot2 φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v ¬ x v L u v = u
49 1 3 4 10 17 21 24 17 48 tglineneq φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v x L v u L x
50 49 necomd φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v u L x x L v
51 1 3 4 11 23 16 42 42 12 22 15 tglinethru φ x A B u A x u v B x v A = u L x
52 51 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v A = u L x
53 13 elin2d φ x A B x B
54 53 ad4antr φ x A B u A x u v B x v x B
55 1 3 4 11 16 20 44 44 18 54 19 tglinethru φ x A B u A x u v B x v B = x L v
56 55 adantl4r φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v B = x L v
57 50 52 56 3netr4d φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v A B
58 7 adantr φ x A B B ran L
59 1 3 4 9 58 53 tglnpt2 φ x A B v B x v
60 59 ad5ant12 φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u v B x v
61 57 60 r19.29a φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u A B
62 6 adantr φ x A B A ran L
63 1 3 4 9 62 14 tglnpt2 φ x A B u A x u
64 63 adantr φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G u A x u
65 61 64 r19.29a φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G A B
66 1 2 3 4 5 6 7 isperp φ A 𝒢 G B x A B y A z B ⟨“ yxz ”⟩ 𝒢 G
67 8 66 mpbid φ x A B y A z B ⟨“ yxz ”⟩ 𝒢 G
68 65 67 r19.29a φ A B