Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|
2 |
|
isperp.d |
|
3 |
|
isperp.i |
|
4 |
|
isperp.l |
|
5 |
|
isperp.g |
|
6 |
|
isperp.a |
|
7 |
|
isperp.b |
|
8 |
|
perpcom.1 |
|
9 |
5
|
adantr |
|
10 |
9
|
ad5antr |
|
11 |
5
|
ad5antr |
|
12 |
6
|
ad5antr |
|
13 |
|
simpr |
|
14 |
13
|
elin1d |
|
15 |
14
|
ad4antr |
|
16 |
1 4 3 11 12 15
|
tglnpt |
|
17 |
16
|
adantl4r |
|
18 |
7
|
ad5antr |
|
19 |
|
simplr |
|
20 |
1 4 3 11 18 19
|
tglnpt |
|
21 |
20
|
adantl4r |
|
22 |
|
simp-4r |
|
23 |
1 4 3 11 12 22
|
tglnpt |
|
24 |
23
|
adantl4r |
|
25 |
|
eqid |
|
26 |
|
simp-4r |
|
27 |
|
simplr |
|
28 |
|
simp-5r |
|
29 |
|
id |
|
30 |
|
eqidd |
|
31 |
|
eqidd |
|
32 |
29 30 31
|
s3eqd |
|
33 |
32
|
eleq1d |
|
34 |
|
eqidd |
|
35 |
|
eqidd |
|
36 |
|
id |
|
37 |
34 35 36
|
s3eqd |
|
38 |
37
|
eleq1d |
|
39 |
33 38
|
rspc2va |
|
40 |
26 27 28 39
|
syl21anc |
|
41 |
|
simpllr |
|
42 |
41
|
necomd |
|
43 |
42
|
adantl4r |
|
44 |
|
simpr |
|
45 |
44
|
necomd |
|
46 |
45
|
adantl4r |
|
47 |
1 2 3 4 25 10 24 17 21 40 43 46
|
ragncol |
|
48 |
1 4 3 10 24 17 21 47
|
ncolrot2 |
|
49 |
1 3 4 10 17 21 24 17 48
|
tglineneq |
|
50 |
49
|
necomd |
|
51 |
1 3 4 11 23 16 42 42 12 22 15
|
tglinethru |
|
52 |
51
|
adantl4r |
|
53 |
13
|
elin2d |
|
54 |
53
|
ad4antr |
|
55 |
1 3 4 11 16 20 44 44 18 54 19
|
tglinethru |
|
56 |
55
|
adantl4r |
|
57 |
50 52 56
|
3netr4d |
|
58 |
7
|
adantr |
|
59 |
1 3 4 9 58 53
|
tglnpt2 |
|
60 |
59
|
ad5ant12 |
|
61 |
57 60
|
r19.29a |
|
62 |
6
|
adantr |
|
63 |
1 3 4 9 62 14
|
tglnpt2 |
|
64 |
63
|
adantr |
|
65 |
61 64
|
r19.29a |
|
66 |
1 2 3 4 5 6 7
|
isperp |
|
67 |
8 66
|
mpbid |
|
68 |
65 67
|
r19.29a |
|