Metamath Proof Explorer


Theorem pet2

Description: Partition-Equivalence Theorem, with general R . This theorem (together with pet and pets ) is the main result of my investigation into set theory, see the comment of pet . (Contributed by Peter Mazsa, 24-May-2021) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion pet2 Disj R E -1 A dom R E -1 A / R E -1 A = A EqvRel R E -1 A dom R E -1 A / R E -1 A = A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj5 EqvRel R E -1 A dom R E -1 A / R E -1 A = A Disj R E -1 A
2 1 petlem Disj R E -1 A dom R E -1 A / R E -1 A = A EqvRel R E -1 A dom R E -1 A / R E -1 A = A