Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
pet2
Metamath Proof Explorer
Description: Partition-Equivalence Theorem, with general R . This theorem
(together with pet and pets ) is the main result of my investigation
into set theory, see the comment of pet . (Contributed by Peter Mazsa , 24-May-2021) (Revised by Peter Mazsa , 23-Sep-2021)
Ref
Expression
Assertion
pet2
⊢ Disj R ⋉ E -1 ↾ A ∧ dom ⁡ R ⋉ E -1 ↾ A / R ⋉ E -1 ↾ A = A ↔ EqvRel ≀ R ⋉ E -1 ↾ A ∧ dom ⁡ ≀ R ⋉ E -1 ↾ A / ≀ R ⋉ E -1 ↾ A = A
Proof
Step
Hyp
Ref
Expression
1
eqvrelqseqdisj5
⊢ EqvRel ≀ R ⋉ E -1 ↾ A ∧ dom ⁡ ≀ R ⋉ E -1 ↾ A / ≀ R ⋉ E -1 ↾ A = A → Disj R ⋉ E -1 ↾ A
2
1
petlem
⊢ Disj R ⋉ E -1 ↾ A ∧ dom ⁡ R ⋉ E -1 ↾ A / R ⋉ E -1 ↾ A = A ↔ EqvRel ≀ R ⋉ E -1 ↾ A ∧ dom ⁡ ≀ R ⋉ E -1 ↾ A / ≀ R ⋉ E -1 ↾ A = A