Metamath Proof Explorer


Theorem petincnvepres

Description: The shortest form of a partition-equivalence theorem with intersection and general R . Cf. br1cossincnvepres . Cf. pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion petincnvepres Could not format assertion : No typesetting found for |- ( ( R i^i ( `' _E |` A ) ) Part A <-> ,~ ( R i^i ( `' _E |` A ) ) ErALTV A ) with typecode |-

Proof

Step Hyp Ref Expression
1 petincnvepres2 Disj R E -1 A dom R E -1 A / R E -1 A = A EqvRel R E -1 A dom R E -1 A / R E -1 A = A
2 dfpart2 Could not format ( ( R i^i ( `' _E |` A ) ) Part A <-> ( Disj ( R i^i ( `' _E |` A ) ) /\ ( dom ( R i^i ( `' _E |` A ) ) /. ( R i^i ( `' _E |` A ) ) ) = A ) ) : No typesetting found for |- ( ( R i^i ( `' _E |` A ) ) Part A <-> ( Disj ( R i^i ( `' _E |` A ) ) /\ ( dom ( R i^i ( `' _E |` A ) ) /. ( R i^i ( `' _E |` A ) ) ) = A ) ) with typecode |-
3 dferALTV2 R E -1 A ErALTV A EqvRel R E -1 A dom R E -1 A / R E -1 A = A
4 1 2 3 3bitr4i Could not format ( ( R i^i ( `' _E |` A ) ) Part A <-> ,~ ( R i^i ( `' _E |` A ) ) ErALTV A ) : No typesetting found for |- ( ( R i^i ( `' _E |` A ) ) Part A <-> ,~ ( R i^i ( `' _E |` A ) ) ErALTV A ) with typecode |-