Metamath Proof Explorer


Theorem petincnvepres2

Description: A partition-equivalence theorem with intersection and general R . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion petincnvepres2 Disj R E -1 A dom R E -1 A / R E -1 A = A EqvRel R E -1 A dom R E -1 A / R E -1 A = A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj4 EqvRel R E -1 A dom R E -1 A / R E -1 A = A Disj R E -1 A
2 1 petlem Disj R E -1 A dom R E -1 A / R E -1 A = A EqvRel R E -1 A dom R E -1 A / R E -1 A = A