Metamath Proof Explorer


Theorem pexmidALTN

Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N . Lemma 3.3(2) in Holland95 p. 215. In our proof, we use the variables X , M , p , q , r in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidALT.a A = Atoms K
pexmidALT.p + ˙ = + 𝑃 K
pexmidALT.o ˙ = 𝑃 K
Assertion pexmidALTN K HL X A ˙ ˙ X = X X + ˙ ˙ X = A

Proof

Step Hyp Ref Expression
1 pexmidALT.a A = Atoms K
2 pexmidALT.p + ˙ = + 𝑃 K
3 pexmidALT.o ˙ = 𝑃 K
4 id X = X =
5 fveq2 X = ˙ X = ˙
6 4 5 oveq12d X = X + ˙ ˙ X = + ˙ ˙
7 1 3 pol0N K HL ˙ = A
8 eqimss ˙ = A ˙ A
9 7 8 syl K HL ˙ A
10 1 2 padd02 K HL ˙ A + ˙ ˙ = ˙
11 9 10 mpdan K HL + ˙ ˙ = ˙
12 11 7 eqtrd K HL + ˙ ˙ = A
13 12 ad2antrr K HL X A ˙ ˙ X = X + ˙ ˙ = A
14 6 13 sylan9eqr K HL X A ˙ ˙ X = X X = X + ˙ ˙ X = A
15 1 2 3 pexmidlem8N K HL X A ˙ ˙ X = X X X + ˙ ˙ X = A
16 15 anassrs K HL X A ˙ ˙ X = X X X + ˙ ˙ X = A
17 14 16 pm2.61dane K HL X A ˙ ˙ X = X X + ˙ ˙ X = A