Metamath Proof Explorer


Theorem pexmidlem2N

Description: Lemma for pexmidN . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙ = K
pexmidlem.j ˙ = join K
pexmidlem.a A = Atoms K
pexmidlem.p + ˙ = + 𝑃 K
pexmidlem.o ˙ = 𝑃 K
pexmidlem.m M = X + ˙ p
Assertion pexmidlem2N K HL X A p A r X q ˙ X p ˙ r ˙ q p X + ˙ ˙ X

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙ = K
2 pexmidlem.j ˙ = join K
3 pexmidlem.a A = Atoms K
4 pexmidlem.p + ˙ = + 𝑃 K
5 pexmidlem.o ˙ = 𝑃 K
6 pexmidlem.m M = X + ˙ p
7 simpl1 K HL X A p A r X q ˙ X p ˙ r ˙ q K HL
8 7 hllatd K HL X A p A r X q ˙ X p ˙ r ˙ q K Lat
9 simpl2 K HL X A p A r X q ˙ X p ˙ r ˙ q X A
10 3 5 polssatN K HL X A ˙ X A
11 7 9 10 syl2anc K HL X A p A r X q ˙ X p ˙ r ˙ q ˙ X A
12 simpr1 K HL X A p A r X q ˙ X p ˙ r ˙ q r X
13 simpr2 K HL X A p A r X q ˙ X p ˙ r ˙ q q ˙ X
14 simpl3 K HL X A p A r X q ˙ X p ˙ r ˙ q p A
15 simpr3 K HL X A p A r X q ˙ X p ˙ r ˙ q p ˙ r ˙ q
16 1 2 3 4 elpaddri K Lat X A ˙ X A r X q ˙ X p A p ˙ r ˙ q p X + ˙ ˙ X
17 8 9 11 12 13 14 15 16 syl322anc K HL X A p A r X q ˙ X p ˙ r ˙ q p X + ˙ ˙ X