Metamath Proof Explorer


Theorem pexmidlem3N

Description: Lemma for pexmidN . Use atom exchange hlatexch1 to swap p and q . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙ = K
pexmidlem.j ˙ = join K
pexmidlem.a A = Atoms K
pexmidlem.p + ˙ = + 𝑃 K
pexmidlem.o ˙ = 𝑃 K
pexmidlem.m M = X + ˙ p
Assertion pexmidlem3N K HL X A p A r X q ˙ X q ˙ r ˙ p p X + ˙ ˙ X

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙ = K
2 pexmidlem.j ˙ = join K
3 pexmidlem.a A = Atoms K
4 pexmidlem.p + ˙ = + 𝑃 K
5 pexmidlem.o ˙ = 𝑃 K
6 pexmidlem.m M = X + ˙ p
7 simp1 K HL X A p A r X q ˙ X q ˙ r ˙ p K HL X A p A
8 simp2l K HL X A p A r X q ˙ X q ˙ r ˙ p r X
9 simp2r K HL X A p A r X q ˙ X q ˙ r ˙ p q ˙ X
10 simpl1 K HL X A p A r X q ˙ X K HL
11 simpl2 K HL X A p A r X q ˙ X X A
12 3 5 polssatN K HL X A ˙ X A
13 10 11 12 syl2anc K HL X A p A r X q ˙ X ˙ X A
14 simprr K HL X A p A r X q ˙ X q ˙ X
15 13 14 sseldd K HL X A p A r X q ˙ X q A
16 simpl3 K HL X A p A r X q ˙ X p A
17 simprl K HL X A p A r X q ˙ X r X
18 11 17 sseldd K HL X A p A r X q ˙ X r A
19 1 2 3 4 5 6 pexmidlem1N K HL X A r X q ˙ X q r
20 19 3adantl3 K HL X A p A r X q ˙ X q r
21 1 2 3 hlatexch1 K HL q A p A r A q r q ˙ r ˙ p p ˙ r ˙ q
22 10 15 16 18 20 21 syl131anc K HL X A p A r X q ˙ X q ˙ r ˙ p p ˙ r ˙ q
23 22 3impia K HL X A p A r X q ˙ X q ˙ r ˙ p p ˙ r ˙ q
24 1 2 3 4 5 6 pexmidlem2N K HL X A p A r X q ˙ X p ˙ r ˙ q p X + ˙ ˙ X
25 7 8 9 23 24 syl13anc K HL X A p A r X q ˙ X q ˙ r ˙ p p X + ˙ ˙ X