Metamath Proof Explorer


Theorem pexmidlem5N

Description: Lemma for pexmidN . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙ = K
pexmidlem.j ˙ = join K
pexmidlem.a A = Atoms K
pexmidlem.p + ˙ = + 𝑃 K
pexmidlem.o ˙ = 𝑃 K
pexmidlem.m M = X + ˙ p
Assertion pexmidlem5N K HL X A p A X ¬ p X + ˙ ˙ X ˙ X M =

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙ = K
2 pexmidlem.j ˙ = join K
3 pexmidlem.a A = Atoms K
4 pexmidlem.p + ˙ = + 𝑃 K
5 pexmidlem.o ˙ = 𝑃 K
6 pexmidlem.m M = X + ˙ p
7 n0 ˙ X M q q ˙ X M
8 1 2 3 4 5 6 pexmidlem4N K HL X A p A X q ˙ X M p X + ˙ ˙ X
9 8 expr K HL X A p A X q ˙ X M p X + ˙ ˙ X
10 9 exlimdv K HL X A p A X q q ˙ X M p X + ˙ ˙ X
11 7 10 syl5bi K HL X A p A X ˙ X M p X + ˙ ˙ X
12 11 necon1bd K HL X A p A X ¬ p X + ˙ ˙ X ˙ X M =
13 12 impr K HL X A p A X ¬ p X + ˙ ˙ X ˙ X M =