Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
pexmidlem5N
Next ⟩
pexmidlem6N
Metamath Proof Explorer
Ascii
Unicode
Theorem
pexmidlem5N
Description:
Lemma for
pexmidN
.
(Contributed by
NM
, 2-Feb-2012)
(New usage is discouraged.)
Ref
Expression
Hypotheses
pexmidlem.l
⊢
≤
˙
=
≤
K
pexmidlem.j
⊢
∨
˙
=
join
⁡
K
pexmidlem.a
⊢
A
=
Atoms
⁡
K
pexmidlem.p
⊢
+
˙
=
+
𝑃
⁡
K
pexmidlem.o
⊢
⊥
˙
=
⊥
𝑃
⁡
K
pexmidlem.m
⊢
M
=
X
+
˙
p
Assertion
pexmidlem5N
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
∧
¬
p
∈
X
+
˙
⊥
˙
⁡
X
→
⊥
˙
⁡
X
∩
M
=
∅
Proof
Step
Hyp
Ref
Expression
1
pexmidlem.l
⊢
≤
˙
=
≤
K
2
pexmidlem.j
⊢
∨
˙
=
join
⁡
K
3
pexmidlem.a
⊢
A
=
Atoms
⁡
K
4
pexmidlem.p
⊢
+
˙
=
+
𝑃
⁡
K
5
pexmidlem.o
⊢
⊥
˙
=
⊥
𝑃
⁡
K
6
pexmidlem.m
⊢
M
=
X
+
˙
p
7
n0
⊢
⊥
˙
⁡
X
∩
M
≠
∅
↔
∃
q
q
∈
⊥
˙
⁡
X
∩
M
8
1
2
3
4
5
6
pexmidlem4N
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
∧
q
∈
⊥
˙
⁡
X
∩
M
→
p
∈
X
+
˙
⊥
˙
⁡
X
9
8
expr
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
→
q
∈
⊥
˙
⁡
X
∩
M
→
p
∈
X
+
˙
⊥
˙
⁡
X
10
9
exlimdv
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
→
∃
q
q
∈
⊥
˙
⁡
X
∩
M
→
p
∈
X
+
˙
⊥
˙
⁡
X
11
7
10
syl5bi
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
→
⊥
˙
⁡
X
∩
M
≠
∅
→
p
∈
X
+
˙
⊥
˙
⁡
X
12
11
necon1bd
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
→
¬
p
∈
X
+
˙
⊥
˙
⁡
X
→
⊥
˙
⁡
X
∩
M
=
∅
13
12
impr
⊢
K
∈
HL
∧
X
⊆
A
∧
p
∈
A
∧
X
≠
∅
∧
¬
p
∈
X
+
˙
⊥
˙
⁡
X
→
⊥
˙
⁡
X
∩
M
=
∅