Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
|
2 |
|
pexmidlem.j |
|
3 |
|
pexmidlem.a |
|
4 |
|
pexmidlem.p |
|
5 |
|
pexmidlem.o |
|
6 |
|
pexmidlem.m |
|
7 |
1 2 3 4 5 6
|
pexmidlem5N |
|
8 |
7
|
3adantr1 |
|
9 |
8
|
fveq2d |
|
10 |
|
simpl1 |
|
11 |
3 5
|
pol0N |
|
12 |
10 11
|
syl |
|
13 |
9 12
|
eqtrd |
|
14 |
13
|
ineq1d |
|
15 |
|
simpl2 |
|
16 |
|
simpl3 |
|
17 |
16
|
snssd |
|
18 |
3 4
|
paddssat |
|
19 |
10 15 17 18
|
syl3anc |
|
20 |
6 19
|
eqsstrid |
|
21 |
10 15 20
|
3jca |
|
22 |
3 4
|
sspadd1 |
|
23 |
10 15 17 22
|
syl3anc |
|
24 |
23 6
|
sseqtrrdi |
|
25 |
|
simpr1 |
|
26 |
|
eqid |
|
27 |
3 5 26
|
ispsubclN |
|
28 |
10 27
|
syl |
|
29 |
15 25 28
|
mpbir2and |
|
30 |
3 4 26
|
paddatclN |
|
31 |
10 29 16 30
|
syl3anc |
|
32 |
6 31
|
eqeltrid |
|
33 |
5 26
|
psubcli2N |
|
34 |
10 32 33
|
syl2anc |
|
35 |
24 34
|
jca |
|
36 |
3 5
|
poml4N |
|
37 |
21 35 36
|
sylc |
|
38 |
|
sseqin2 |
|
39 |
20 38
|
sylib |
|
40 |
14 37 39
|
3eqtr3rd |
|
41 |
40 25
|
eqtrd |
|