Metamath Proof Explorer


Theorem pf1f

Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q Q = ran eval 1 R
pf1f.b B = Base R
Assertion pf1f F Q F : B B

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q = ran eval 1 R
2 pf1f.b B = Base R
3 eqid R 𝑠 B = R 𝑠 B
4 eqid Base R 𝑠 B = Base R 𝑠 B
5 1 pf1rcl F Q R CRing
6 2 fvexi B V
7 6 a1i F Q B V
8 2 1 pf1subrg R CRing Q SubRing R 𝑠 B
9 4 subrgss Q SubRing R 𝑠 B Q Base R 𝑠 B
10 5 8 9 3syl F Q Q Base R 𝑠 B
11 id F Q F Q
12 10 11 sseldd F Q F Base R 𝑠 B
13 3 2 4 5 7 12 pwselbas F Q F : B B