Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomial evaluation
pf1f
Next ⟩
mpfpf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
pf1f
Description:
Polynomial functions are functions.
(Contributed by
Mario Carneiro
, 12-Jun-2015)
Ref
Expression
Hypotheses
pf1rcl.q
⊢
Q
=
ran
⁡
eval
1
⁡
R
pf1f.b
⊢
B
=
Base
R
Assertion
pf1f
⊢
F
∈
Q
→
F
:
B
⟶
B
Proof
Step
Hyp
Ref
Expression
1
pf1rcl.q
⊢
Q
=
ran
⁡
eval
1
⁡
R
2
pf1f.b
⊢
B
=
Base
R
3
eqid
⊢
R
↑
𝑠
B
=
R
↑
𝑠
B
4
eqid
⊢
Base
R
↑
𝑠
B
=
Base
R
↑
𝑠
B
5
1
pf1rcl
⊢
F
∈
Q
→
R
∈
CRing
6
2
fvexi
⊢
B
∈
V
7
6
a1i
⊢
F
∈
Q
→
B
∈
V
8
2
1
pf1subrg
⊢
R
∈
CRing
→
Q
∈
SubRing
⁡
R
↑
𝑠
B
9
4
subrgss
⊢
Q
∈
SubRing
⁡
R
↑
𝑠
B
→
Q
⊆
Base
R
↑
𝑠
B
10
5
8
9
3syl
⊢
F
∈
Q
→
Q
⊆
Base
R
↑
𝑠
B
11
id
⊢
F
∈
Q
→
F
∈
Q
12
10
11
sseldd
⊢
F
∈
Q
→
F
∈
Base
R
↑
𝑠
B
13
3
2
4
5
7
12
pwselbas
⊢
F
∈
Q
→
F
:
B
⟶
B