Metamath Proof Explorer


Theorem pf1id

Description: The identity is a polynomial function. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypotheses pf1const.b B = Base R
pf1const.q Q = ran eval 1 R
Assertion pf1id R CRing I B Q

Proof

Step Hyp Ref Expression
1 pf1const.b B = Base R
2 pf1const.q Q = ran eval 1 R
3 eqid eval 1 R = eval 1 R
4 eqid var 1 R = var 1 R
5 3 4 1 evl1var R CRing eval 1 R var 1 R = I B
6 eqid Poly 1 R = Poly 1 R
7 eqid R 𝑠 B = R 𝑠 B
8 3 6 7 1 evl1rhm R CRing eval 1 R Poly 1 R RingHom R 𝑠 B
9 eqid Base Poly 1 R = Base Poly 1 R
10 eqid Base R 𝑠 B = Base R 𝑠 B
11 9 10 rhmf eval 1 R Poly 1 R RingHom R 𝑠 B eval 1 R : Base Poly 1 R Base R 𝑠 B
12 ffn eval 1 R : Base Poly 1 R Base R 𝑠 B eval 1 R Fn Base Poly 1 R
13 8 11 12 3syl R CRing eval 1 R Fn Base Poly 1 R
14 crngring R CRing R Ring
15 4 6 9 vr1cl R Ring var 1 R Base Poly 1 R
16 14 15 syl R CRing var 1 R Base Poly 1 R
17 fnfvelrn eval 1 R Fn Base Poly 1 R var 1 R Base Poly 1 R eval 1 R var 1 R ran eval 1 R
18 13 16 17 syl2anc R CRing eval 1 R var 1 R ran eval 1 R
19 5 18 eqeltrrd R CRing I B ran eval 1 R
20 19 2 eleqtrrdi R CRing I B Q