Metamath Proof Explorer


Theorem pf1mpf

Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pf1rcl.q Q = ran eval 1 R
pf1f.b B = Base R
mpfpf1.q E = ran 1 𝑜 eval R
Assertion pf1mpf F Q F x B 1 𝑜 x E

Proof

Step Hyp Ref Expression
1 pf1rcl.q Q = ran eval 1 R
2 pf1f.b B = Base R
3 mpfpf1.q E = ran 1 𝑜 eval R
4 1 pf1rcl F Q R CRing
5 id F Q F Q
6 5 1 eleqtrdi F Q F ran eval 1 R
7 eqid eval 1 R = eval 1 R
8 eqid Poly 1 R = Poly 1 R
9 eqid R 𝑠 B = R 𝑠 B
10 7 8 9 2 evl1rhm R CRing eval 1 R Poly 1 R RingHom R 𝑠 B
11 4 10 syl F Q eval 1 R Poly 1 R RingHom R 𝑠 B
12 eqid Base Poly 1 R = Base Poly 1 R
13 eqid Base R 𝑠 B = Base R 𝑠 B
14 12 13 rhmf eval 1 R Poly 1 R RingHom R 𝑠 B eval 1 R : Base Poly 1 R Base R 𝑠 B
15 ffn eval 1 R : Base Poly 1 R Base R 𝑠 B eval 1 R Fn Base Poly 1 R
16 fvelrnb eval 1 R Fn Base Poly 1 R F ran eval 1 R y Base Poly 1 R eval 1 R y = F
17 11 14 15 16 4syl F Q F ran eval 1 R y Base Poly 1 R eval 1 R y = F
18 6 17 mpbid F Q y Base Poly 1 R eval 1 R y = F
19 eqid 1 𝑜 eval R = 1 𝑜 eval R
20 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
21 8 12 ply1bas Base Poly 1 R = Base 1 𝑜 mPoly R
22 7 19 2 20 21 evl1val R CRing y Base Poly 1 R eval 1 R y = 1 𝑜 eval R y z B 1 𝑜 × z
23 22 coeq1d R CRing y Base Poly 1 R eval 1 R y x B 1 𝑜 x = 1 𝑜 eval R y z B 1 𝑜 × z x B 1 𝑜 x
24 coass 1 𝑜 eval R y z B 1 𝑜 × z x B 1 𝑜 x = 1 𝑜 eval R y z B 1 𝑜 × z x B 1 𝑜 x
25 df1o2 1 𝑜 =
26 2 fvexi B V
27 0ex V
28 eqid x B 1 𝑜 x = x B 1 𝑜 x
29 25 26 27 28 mapsncnv x B 1 𝑜 x -1 = z B 1 𝑜 × z
30 29 coeq1i x B 1 𝑜 x -1 x B 1 𝑜 x = z B 1 𝑜 × z x B 1 𝑜 x
31 25 26 27 28 mapsnf1o2 x B 1 𝑜 x : B 1 𝑜 1-1 onto B
32 f1ococnv1 x B 1 𝑜 x : B 1 𝑜 1-1 onto B x B 1 𝑜 x -1 x B 1 𝑜 x = I B 1 𝑜
33 31 32 mp1i R CRing y Base Poly 1 R x B 1 𝑜 x -1 x B 1 𝑜 x = I B 1 𝑜
34 30 33 eqtr3id R CRing y Base Poly 1 R z B 1 𝑜 × z x B 1 𝑜 x = I B 1 𝑜
35 34 coeq2d R CRing y Base Poly 1 R 1 𝑜 eval R y z B 1 𝑜 × z x B 1 𝑜 x = 1 𝑜 eval R y I B 1 𝑜
36 24 35 eqtrid R CRing y Base Poly 1 R 1 𝑜 eval R y z B 1 𝑜 × z x B 1 𝑜 x = 1 𝑜 eval R y I B 1 𝑜
37 eqid R 𝑠 B 1 𝑜 = R 𝑠 B 1 𝑜
38 eqid Base R 𝑠 B 1 𝑜 = Base R 𝑠 B 1 𝑜
39 simpl R CRing y Base Poly 1 R R CRing
40 ovexd R CRing y Base Poly 1 R B 1 𝑜 V
41 1on 1 𝑜 On
42 19 2 20 37 evlrhm 1 𝑜 On R CRing 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
43 41 42 mpan R CRing 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜
44 21 38 rhmf 1 𝑜 eval R 1 𝑜 mPoly R RingHom R 𝑠 B 1 𝑜 1 𝑜 eval R : Base Poly 1 R Base R 𝑠 B 1 𝑜
45 43 44 syl R CRing 1 𝑜 eval R : Base Poly 1 R Base R 𝑠 B 1 𝑜
46 45 ffvelcdmda R CRing y Base Poly 1 R 1 𝑜 eval R y Base R 𝑠 B 1 𝑜
47 37 2 38 39 40 46 pwselbas R CRing y Base Poly 1 R 1 𝑜 eval R y : B 1 𝑜 B
48 fcoi1 1 𝑜 eval R y : B 1 𝑜 B 1 𝑜 eval R y I B 1 𝑜 = 1 𝑜 eval R y
49 47 48 syl R CRing y Base Poly 1 R 1 𝑜 eval R y I B 1 𝑜 = 1 𝑜 eval R y
50 23 36 49 3eqtrd R CRing y Base Poly 1 R eval 1 R y x B 1 𝑜 x = 1 𝑜 eval R y
51 45 ffnd R CRing 1 𝑜 eval R Fn Base Poly 1 R
52 fnfvelrn 1 𝑜 eval R Fn Base Poly 1 R y Base Poly 1 R 1 𝑜 eval R y ran 1 𝑜 eval R
53 51 52 sylan R CRing y Base Poly 1 R 1 𝑜 eval R y ran 1 𝑜 eval R
54 53 3 eleqtrrdi R CRing y Base Poly 1 R 1 𝑜 eval R y E
55 50 54 eqeltrd R CRing y Base Poly 1 R eval 1 R y x B 1 𝑜 x E
56 coeq1 eval 1 R y = F eval 1 R y x B 1 𝑜 x = F x B 1 𝑜 x
57 56 eleq1d eval 1 R y = F eval 1 R y x B 1 𝑜 x E F x B 1 𝑜 x E
58 55 57 syl5ibcom R CRing y Base Poly 1 R eval 1 R y = F F x B 1 𝑜 x E
59 58 rexlimdva R CRing y Base Poly 1 R eval 1 R y = F F x B 1 𝑜 x E
60 4 18 59 sylc F Q F x B 1 𝑜 x E