Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
|
2 |
|
pfxccatpfx2.m |
|
3 |
|
simprl |
|
4 |
|
elfznn0 |
|
5 |
4
|
adantl |
|
6 |
5
|
adantl |
|
7 |
|
lencl |
|
8 |
1 7
|
eqeltrid |
|
9 |
8
|
adantr |
|
10 |
9
|
adantr |
|
11 |
10
|
adantl |
|
12 |
|
simpl |
|
13 |
|
elfz2nn0 |
|
14 |
6 11 12 13
|
syl3anbrc |
|
15 |
|
df-3an |
|
16 |
3 14 15
|
sylanbrc |
|
17 |
1
|
pfxccatpfx1 |
|
18 |
16 17
|
syl |
|
19 |
|
iftrue |
|
20 |
19
|
adantr |
|
21 |
18 20
|
eqtr4d |
|
22 |
|
simprl |
|
23 |
|
elfz2nn0 |
|
24 |
1
|
eleq1i |
|
25 |
|
nn0ltp1le |
|
26 |
|
nn0re |
|
27 |
|
nn0re |
|
28 |
|
ltnle |
|
29 |
26 27 28
|
syl2an |
|
30 |
25 29
|
bitr3d |
|
31 |
30
|
3ad2antr1 |
|
32 |
|
simpr3 |
|
33 |
32
|
anim1ci |
|
34 |
|
nn0z |
|
35 |
34
|
3ad2ant1 |
|
36 |
35
|
adantl |
|
37 |
36
|
adantr |
|
38 |
|
peano2nn0 |
|
39 |
38
|
nn0zd |
|
40 |
39
|
adantr |
|
41 |
40
|
adantr |
|
42 |
|
nn0z |
|
43 |
42
|
3ad2ant2 |
|
44 |
43
|
adantl |
|
45 |
44
|
adantr |
|
46 |
|
elfz |
|
47 |
37 41 45 46
|
syl3anc |
|
48 |
33 47
|
mpbird |
|
49 |
48
|
ex |
|
50 |
31 49
|
sylbird |
|
51 |
50
|
ex |
|
52 |
24 51
|
sylbir |
|
53 |
7 52
|
syl |
|
54 |
53
|
adantr |
|
55 |
23 54
|
syl5bi |
|
56 |
55
|
imp |
|
57 |
56
|
impcom |
|
58 |
|
df-3an |
|
59 |
22 57 58
|
sylanbrc |
|
60 |
1 2
|
pfxccatpfx2 |
|
61 |
59 60
|
syl |
|
62 |
|
iffalse |
|
63 |
62
|
adantr |
|
64 |
61 63
|
eqtr4d |
|
65 |
21 64
|
pm2.61ian |
|
66 |
65
|
ex |
|