Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2 |
|
2 |
|
zsubcl |
|
3 |
2
|
3adant1 |
|
4 |
3
|
adantr |
|
5 |
1 4
|
sylbi |
|
6 |
5
|
adantr |
|
7 |
|
elfzonelfzo |
|
8 |
6 7
|
syl |
|
9 |
|
elfz2nn0 |
|
10 |
|
nn0cn |
|
11 |
|
nn0cn |
|
12 |
|
elfzelz |
|
13 |
|
zcn |
|
14 |
|
subcl |
|
15 |
14
|
ancoms |
|
16 |
15
|
addid1d |
|
17 |
16
|
eqcomd |
|
18 |
17
|
adantl |
|
19 |
|
simprr |
|
20 |
|
simpl |
|
21 |
20
|
adantl |
|
22 |
|
simpl |
|
23 |
19 21 22
|
npncan3d |
|
24 |
23
|
eqcomd |
|
25 |
18 24
|
oveq12d |
|
26 |
25
|
ex |
|
27 |
12 13 26
|
3syl |
|
28 |
27
|
com12 |
|
29 |
10 11 28
|
syl2an |
|
30 |
29
|
3adant3 |
|
31 |
9 30
|
sylbi |
|
32 |
31
|
imp |
|
33 |
32
|
eleq2d |
|
34 |
33
|
biimpa |
|
35 |
|
0zd |
|
36 |
|
elfz2 |
|
37 |
|
zsubcl |
|
38 |
37
|
ancoms |
|
39 |
38
|
3adant2 |
|
40 |
39
|
adantr |
|
41 |
36 40
|
sylbi |
|
42 |
41
|
adantl |
|
43 |
6 35 42
|
3jca |
|
44 |
43
|
adantr |
|
45 |
|
fzosubel2 |
|
46 |
34 44 45
|
syl2anc |
|
47 |
46
|
ex |
|
48 |
8 47
|
syld |
|