Metamath Proof Explorer


Theorem pfxccatin12lem1

Description: Lemma 1 for pfxccatin12 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion pfxccatin12lem1 M 0 L N L X K 0 ..^ N M ¬ K 0 ..^ L M K L M 0 ..^ N L

Proof

Step Hyp Ref Expression
1 elfz2 M 0 L 0 L M 0 M M L
2 zsubcl L M L M
3 2 3adant1 0 L M L M
4 3 adantr 0 L M 0 M M L L M
5 1 4 sylbi M 0 L L M
6 5 adantr M 0 L N L X L M
7 elfzonelfzo L M K 0 ..^ N M ¬ K 0 ..^ L M K L M ..^ N M
8 6 7 syl M 0 L N L X K 0 ..^ N M ¬ K 0 ..^ L M K L M ..^ N M
9 elfz2nn0 M 0 L M 0 L 0 M L
10 nn0cn M 0 M
11 nn0cn L 0 L
12 elfzelz N L X N
13 zcn N N
14 subcl L M L M
15 14 ancoms M L L M
16 15 addid1d M L L - M + 0 = L M
17 16 eqcomd M L L M = L - M + 0
18 17 adantl N M L L M = L - M + 0
19 simprr N M L L
20 simpl M L M
21 20 adantl N M L M
22 simpl N M L N
23 19 21 22 npncan3d N M L L M + N - L = N M
24 23 eqcomd N M L N M = L M + N - L
25 18 24 oveq12d N M L L M ..^ N M = L - M + 0 ..^ L M + N - L
26 25 ex N M L L M ..^ N M = L - M + 0 ..^ L M + N - L
27 12 13 26 3syl N L X M L L M ..^ N M = L - M + 0 ..^ L M + N - L
28 27 com12 M L N L X L M ..^ N M = L - M + 0 ..^ L M + N - L
29 10 11 28 syl2an M 0 L 0 N L X L M ..^ N M = L - M + 0 ..^ L M + N - L
30 29 3adant3 M 0 L 0 M L N L X L M ..^ N M = L - M + 0 ..^ L M + N - L
31 9 30 sylbi M 0 L N L X L M ..^ N M = L - M + 0 ..^ L M + N - L
32 31 imp M 0 L N L X L M ..^ N M = L - M + 0 ..^ L M + N - L
33 32 eleq2d M 0 L N L X K L M ..^ N M K L - M + 0 ..^ L M + N - L
34 33 biimpa M 0 L N L X K L M ..^ N M K L - M + 0 ..^ L M + N - L
35 0zd M 0 L N L X 0
36 elfz2 N L X L X N L N N X
37 zsubcl N L N L
38 37 ancoms L N N L
39 38 3adant2 L X N N L
40 39 adantr L X N L N N X N L
41 36 40 sylbi N L X N L
42 41 adantl M 0 L N L X N L
43 6 35 42 3jca M 0 L N L X L M 0 N L
44 43 adantr M 0 L N L X K L M ..^ N M L M 0 N L
45 fzosubel2 K L - M + 0 ..^ L M + N - L L M 0 N L K L M 0 ..^ N L
46 34 44 45 syl2anc M 0 L N L X K L M ..^ N M K L M 0 ..^ N L
47 46 ex M 0 L N L X K L M ..^ N M K L M 0 ..^ N L
48 8 47 syld M 0 L N L X K 0 ..^ N M ¬ K 0 ..^ L M K L M 0 ..^ N L