| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatin2.l |
|
| 2 |
1
|
pfxccatin12lem2c |
|
| 3 |
|
simprl |
|
| 4 |
|
swrdfv |
|
| 5 |
2 3 4
|
syl2an2r |
|
| 6 |
|
elfzoelz |
|
| 7 |
|
elfz2nn0 |
|
| 8 |
|
nn0cn |
|
| 9 |
|
nn0cn |
|
| 10 |
8 9
|
anim12i |
|
| 11 |
|
zcn |
|
| 12 |
|
subcl |
|
| 13 |
12
|
ancoms |
|
| 14 |
13
|
anim1ci |
|
| 15 |
|
subcl |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
addridd |
|
| 18 |
|
simpr |
|
| 19 |
|
simplr |
|
| 20 |
|
simpll |
|
| 21 |
18 19 20
|
subsub3d |
|
| 22 |
17 21
|
eqtr2d |
|
| 23 |
10 11 22
|
syl2an |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eqcoms |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
23 26
|
imbitrrid |
|
| 28 |
1 27
|
ax-mp |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
3adant3 |
|
| 31 |
7 30
|
sylbi |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
6 32
|
syl5com |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
impcom |
|
| 36 |
35
|
fveq2d |
|
| 37 |
|
simpll |
|
| 38 |
|
pfxccatin12lem2a |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
imp |
|
| 41 |
|
id |
|
| 42 |
|
oveq1 |
|
| 43 |
41 42
|
oveq12d |
|
| 44 |
43
|
eleq2d |
|
| 45 |
44
|
eqcoms |
|
| 46 |
1 45
|
ax-mp |
|
| 47 |
40 46
|
sylibr |
|
| 48 |
|
df-3an |
|
| 49 |
37 47 48
|
sylanbrc |
|
| 50 |
|
ccatval2 |
|
| 51 |
49 50
|
syl |
|
| 52 |
|
simplr |
|
| 53 |
52
|
adantr |
|
| 54 |
|
lencl |
|
| 55 |
|
elfzel2 |
|
| 56 |
|
zsubcl |
|
| 57 |
56
|
ancoms |
|
| 58 |
57
|
adantr |
|
| 59 |
|
zre |
|
| 60 |
|
zre |
|
| 61 |
|
subge0 |
|
| 62 |
59 60 61
|
syl2anr |
|
| 63 |
62
|
biimprd |
|
| 64 |
63
|
imp |
|
| 65 |
|
elnn0z |
|
| 66 |
58 64 65
|
sylanbrc |
|
| 67 |
66
|
expcom |
|
| 68 |
67
|
adantr |
|
| 69 |
68
|
expcomd |
|
| 70 |
69
|
com12 |
|
| 71 |
70
|
3ad2ant3 |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
com12 |
|
| 74 |
73
|
adantr |
|
| 75 |
74
|
imp |
|
| 76 |
|
simplr |
|
| 77 |
59
|
3ad2ant3 |
|
| 78 |
77
|
adantl |
|
| 79 |
60
|
adantr |
|
| 80 |
79
|
adantr |
|
| 81 |
|
nn0re |
|
| 82 |
81
|
adantl |
|
| 83 |
82
|
adantr |
|
| 84 |
|
lesubadd2 |
|
| 85 |
84
|
biimprd |
|
| 86 |
78 80 83 85
|
syl3anc |
|
| 87 |
86
|
ex |
|
| 88 |
87
|
com13 |
|
| 89 |
88
|
adantl |
|
| 90 |
89
|
impcom |
|
| 91 |
90
|
impcom |
|
| 92 |
75 76 91
|
3jca |
|
| 93 |
92
|
ex |
|
| 94 |
|
elfz2 |
|
| 95 |
|
elfz2nn0 |
|
| 96 |
93 94 95
|
3imtr4g |
|
| 97 |
96
|
ex |
|
| 98 |
97
|
com23 |
|
| 99 |
55 98
|
syl |
|
| 100 |
99
|
imp |
|
| 101 |
54 100
|
syl5com |
|
| 102 |
101
|
adantl |
|
| 103 |
102
|
imp |
|
| 104 |
103
|
adantr |
|
| 105 |
|
pfxccatin12lem1 |
|
| 106 |
105
|
adantl |
|
| 107 |
106
|
imp |
|
| 108 |
|
pfxfv |
|
| 109 |
53 104 107 108
|
syl3anc |
|
| 110 |
6
|
zcnd |
|
| 111 |
110
|
ad2antrl |
|
| 112 |
55
|
zcnd |
|
| 113 |
112
|
ad2antrl |
|
| 114 |
113
|
adantr |
|
| 115 |
|
elfzelz |
|
| 116 |
115
|
zcnd |
|
| 117 |
116
|
ad2antrl |
|
| 118 |
117
|
adantr |
|
| 119 |
114 118
|
subcld |
|
| 120 |
111 119
|
subcld |
|
| 121 |
120
|
addridd |
|
| 122 |
121
|
eqcomd |
|
| 123 |
122
|
fveq2d |
|
| 124 |
109 123
|
eqtrd |
|
| 125 |
36 51 124
|
3eqtr4d |
|
| 126 |
|
simpll |
|
| 127 |
|
simprl |
|
| 128 |
|
lencl |
|
| 129 |
|
elnn0uz |
|
| 130 |
|
eluzfz2 |
|
| 131 |
129 130
|
sylbi |
|
| 132 |
1 131
|
eqeltrid |
|
| 133 |
128 132
|
syl |
|
| 134 |
133
|
adantr |
|
| 135 |
134
|
adantr |
|
| 136 |
126 127 135
|
3jca |
|
| 137 |
136
|
adantr |
|
| 138 |
|
swrdlen |
|
| 139 |
137 138
|
syl |
|
| 140 |
139
|
eqcomd |
|
| 141 |
140
|
oveq2d |
|
| 142 |
141
|
fveq2d |
|
| 143 |
5 125 142
|
3eqtrd |
|
| 144 |
143
|
ex |
|