Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
|
2 |
1
|
pfxccatin12lem2c |
|
3 |
|
simprl |
|
4 |
|
swrdfv |
|
5 |
2 3 4
|
syl2an2r |
|
6 |
|
elfzoelz |
|
7 |
|
elfz2nn0 |
|
8 |
|
nn0cn |
|
9 |
|
nn0cn |
|
10 |
8 9
|
anim12i |
|
11 |
|
zcn |
|
12 |
|
subcl |
|
13 |
12
|
ancoms |
|
14 |
13
|
anim1ci |
|
15 |
|
subcl |
|
16 |
14 15
|
syl |
|
17 |
16
|
addid1d |
|
18 |
|
simpr |
|
19 |
|
simplr |
|
20 |
|
simpll |
|
21 |
18 19 20
|
subsub3d |
|
22 |
17 21
|
eqtr2d |
|
23 |
10 11 22
|
syl2an |
|
24 |
|
oveq2 |
|
25 |
24
|
eqcoms |
|
26 |
25
|
eqeq1d |
|
27 |
23 26
|
syl5ibr |
|
28 |
1 27
|
ax-mp |
|
29 |
28
|
ex |
|
30 |
29
|
3adant3 |
|
31 |
7 30
|
sylbi |
|
32 |
31
|
ad2antrl |
|
33 |
6 32
|
syl5com |
|
34 |
33
|
adantr |
|
35 |
34
|
impcom |
|
36 |
35
|
fveq2d |
|
37 |
|
simpll |
|
38 |
|
pfxccatin12lem2a |
|
39 |
38
|
adantl |
|
40 |
39
|
imp |
|
41 |
|
id |
|
42 |
|
oveq1 |
|
43 |
41 42
|
oveq12d |
|
44 |
43
|
eleq2d |
|
45 |
44
|
eqcoms |
|
46 |
1 45
|
ax-mp |
|
47 |
40 46
|
sylibr |
|
48 |
|
df-3an |
|
49 |
37 47 48
|
sylanbrc |
|
50 |
|
ccatval2 |
|
51 |
49 50
|
syl |
|
52 |
|
simplr |
|
53 |
52
|
adantr |
|
54 |
|
lencl |
|
55 |
|
elfzel2 |
|
56 |
|
zsubcl |
|
57 |
56
|
ancoms |
|
58 |
57
|
adantr |
|
59 |
|
zre |
|
60 |
|
zre |
|
61 |
|
subge0 |
|
62 |
59 60 61
|
syl2anr |
|
63 |
62
|
biimprd |
|
64 |
63
|
imp |
|
65 |
|
elnn0z |
|
66 |
58 64 65
|
sylanbrc |
|
67 |
66
|
expcom |
|
68 |
67
|
adantr |
|
69 |
68
|
expcomd |
|
70 |
69
|
com12 |
|
71 |
70
|
3ad2ant3 |
|
72 |
71
|
imp |
|
73 |
72
|
com12 |
|
74 |
73
|
adantr |
|
75 |
74
|
imp |
|
76 |
|
simplr |
|
77 |
59
|
3ad2ant3 |
|
78 |
77
|
adantl |
|
79 |
60
|
adantr |
|
80 |
79
|
adantr |
|
81 |
|
nn0re |
|
82 |
81
|
adantl |
|
83 |
82
|
adantr |
|
84 |
|
lesubadd2 |
|
85 |
84
|
biimprd |
|
86 |
78 80 83 85
|
syl3anc |
|
87 |
86
|
ex |
|
88 |
87
|
com13 |
|
89 |
88
|
adantl |
|
90 |
89
|
impcom |
|
91 |
90
|
impcom |
|
92 |
75 76 91
|
3jca |
|
93 |
92
|
ex |
|
94 |
|
elfz2 |
|
95 |
|
elfz2nn0 |
|
96 |
93 94 95
|
3imtr4g |
|
97 |
96
|
ex |
|
98 |
97
|
com23 |
|
99 |
55 98
|
syl |
|
100 |
99
|
imp |
|
101 |
54 100
|
syl5com |
|
102 |
101
|
adantl |
|
103 |
102
|
imp |
|
104 |
103
|
adantr |
|
105 |
|
pfxccatin12lem1 |
|
106 |
105
|
adantl |
|
107 |
106
|
imp |
|
108 |
|
pfxfv |
|
109 |
53 104 107 108
|
syl3anc |
|
110 |
6
|
zcnd |
|
111 |
110
|
ad2antrl |
|
112 |
55
|
zcnd |
|
113 |
112
|
ad2antrl |
|
114 |
113
|
adantr |
|
115 |
|
elfzelz |
|
116 |
115
|
zcnd |
|
117 |
116
|
ad2antrl |
|
118 |
117
|
adantr |
|
119 |
114 118
|
subcld |
|
120 |
111 119
|
subcld |
|
121 |
120
|
addid1d |
|
122 |
121
|
eqcomd |
|
123 |
122
|
fveq2d |
|
124 |
109 123
|
eqtrd |
|
125 |
36 51 124
|
3eqtr4d |
|
126 |
|
simpll |
|
127 |
|
simprl |
|
128 |
|
lencl |
|
129 |
|
elnn0uz |
|
130 |
|
eluzfz2 |
|
131 |
129 130
|
sylbi |
|
132 |
1 131
|
eqeltrid |
|
133 |
128 132
|
syl |
|
134 |
133
|
adantr |
|
135 |
134
|
adantr |
|
136 |
126 127 135
|
3jca |
|
137 |
136
|
adantr |
|
138 |
|
swrdlen |
|
139 |
137 138
|
syl |
|
140 |
139
|
eqcomd |
|
141 |
140
|
oveq2d |
|
142 |
141
|
fveq2d |
|
143 |
5 125 142
|
3eqtrd |
|
144 |
143
|
ex |
|