Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2 |
|
2 |
|
zsubcl |
|
3 |
2
|
3adant1 |
|
4 |
3
|
adantr |
|
5 |
1 4
|
sylbi |
|
6 |
5
|
adantr |
|
7 |
|
elfzonelfzo |
|
8 |
6 7
|
syl |
|
9 |
|
elfzoelz |
|
10 |
|
elfzelz |
|
11 |
|
simpl |
|
12 |
|
simpl |
|
13 |
11 12
|
anim12i |
|
14 |
|
simpr |
|
15 |
|
simpr |
|
16 |
14 15
|
anim12ci |
|
17 |
13 16
|
jca |
|
18 |
17
|
exp32 |
|
19 |
10 18
|
syl5 |
|
20 |
19
|
3adant1 |
|
21 |
20
|
adantr |
|
22 |
1 21
|
sylbi |
|
23 |
22
|
imp |
|
24 |
23
|
impcom |
|
25 |
|
elfzomelpfzo |
|
26 |
24 25
|
syl |
|
27 |
|
elfz2 |
|
28 |
|
simpl3 |
|
29 |
|
simpl2 |
|
30 |
|
simpr |
|
31 |
30
|
adantl |
|
32 |
28 29 31
|
3jca |
|
33 |
27 32
|
sylbi |
|
34 |
33
|
adantl |
|
35 |
34
|
adantl |
|
36 |
|
eluz2 |
|
37 |
35 36
|
sylibr |
|
38 |
|
fzoss2 |
|
39 |
37 38
|
syl |
|
40 |
39
|
sseld |
|
41 |
26 40
|
sylbid |
|
42 |
41
|
ex |
|
43 |
42
|
com23 |
|
44 |
9 43
|
mpcom |
|
45 |
44
|
com12 |
|
46 |
8 45
|
syld |
|