Metamath Proof Explorer


Theorem pfxccatin12lem2a

Description: Lemma for pfxccatin12lem2 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 27-May-2018)

Ref Expression
Assertion pfxccatin12lem2a M 0 L N L X K 0 ..^ N M ¬ K 0 ..^ L M K + M L ..^ X

Proof

Step Hyp Ref Expression
1 elfz2 M 0 L 0 L M 0 M M L
2 zsubcl L M L M
3 2 3adant1 0 L M L M
4 3 adantr 0 L M 0 M M L L M
5 1 4 sylbi M 0 L L M
6 5 adantr M 0 L N L X L M
7 elfzonelfzo L M K 0 ..^ N M ¬ K 0 ..^ L M K L M ..^ N M
8 6 7 syl M 0 L N L X K 0 ..^ N M ¬ K 0 ..^ L M K L M ..^ N M
9 elfzoelz K L M ..^ N M K
10 elfzelz N L X N
11 simpl L M L
12 simpl N K N
13 11 12 anim12i L M N K L N
14 simpr L M M
15 simpr N K K
16 14 15 anim12ci L M N K K M
17 13 16 jca L M N K L N K M
18 17 exp32 L M N K L N K M
19 10 18 syl5 L M N L X K L N K M
20 19 3adant1 0 L M N L X K L N K M
21 20 adantr 0 L M 0 M M L N L X K L N K M
22 1 21 sylbi M 0 L N L X K L N K M
23 22 imp M 0 L N L X K L N K M
24 23 impcom K M 0 L N L X L N K M
25 elfzomelpfzo L N K M K L M ..^ N M K + M L ..^ N
26 24 25 syl K M 0 L N L X K L M ..^ N M K + M L ..^ N
27 elfz2 N L X L X N L N N X
28 simpl3 L X N L N N X N
29 simpl2 L X N L N N X X
30 simpr L N N X N X
31 30 adantl L X N L N N X N X
32 28 29 31 3jca L X N L N N X N X N X
33 27 32 sylbi N L X N X N X
34 33 adantl M 0 L N L X N X N X
35 34 adantl K M 0 L N L X N X N X
36 eluz2 X N N X N X
37 35 36 sylibr K M 0 L N L X X N
38 fzoss2 X N L ..^ N L ..^ X
39 37 38 syl K M 0 L N L X L ..^ N L ..^ X
40 39 sseld K M 0 L N L X K + M L ..^ N K + M L ..^ X
41 26 40 sylbid K M 0 L N L X K L M ..^ N M K + M L ..^ X
42 41 ex K M 0 L N L X K L M ..^ N M K + M L ..^ X
43 42 com23 K K L M ..^ N M M 0 L N L X K + M L ..^ X
44 9 43 mpcom K L M ..^ N M M 0 L N L X K + M L ..^ X
45 44 com12 M 0 L N L X K L M ..^ N M K + M L ..^ X
46 8 45 syld M 0 L N L X K 0 ..^ N M ¬ K 0 ..^ L M K + M L ..^ X