Metamath Proof Explorer


Theorem pfxccatin12lem3

Description: Lemma 3 for pfxccatin12 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 27-May-2018)

Ref Expression
Hypothesis swrdccatin2.l L = A
Assertion pfxccatin12lem3 A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A ++ B substr M N K = A substr M L K

Proof

Step Hyp Ref Expression
1 swrdccatin2.l L = A
2 simpll A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A Word V B Word V
3 elfzo0 K 0 ..^ L M K 0 L M K < L M
4 lencl A Word V A 0
5 elfz2nn0 M 0 L M 0 L 0 M L
6 nn0addcl K 0 M 0 K + M 0
7 6 ex K 0 M 0 K + M 0
8 7 3ad2ant1 K 0 L M K < L M M 0 K + M 0
9 8 com12 M 0 K 0 L M K < L M K + M 0
10 9 3ad2ant1 M 0 L 0 M L K 0 L M K < L M K + M 0
11 10 imp M 0 L 0 M L K 0 L M K < L M K + M 0
12 elnnz L M L M 0 < L M
13 nn0re M 0 M
14 nn0re L 0 L
15 posdif M L M < L 0 < L M
16 13 14 15 syl2an M 0 L 0 M < L 0 < L M
17 elnn0z M 0 M 0 M
18 0re 0
19 zre M M
20 lelttr 0 M L 0 M M < L 0 < L
21 18 19 14 20 mp3an3an M L 0 0 M M < L 0 < L
22 nn0z L 0 L
23 22 anim1i L 0 0 < L L 0 < L
24 elnnz L L 0 < L
25 23 24 sylibr L 0 0 < L L
26 25 ex L 0 0 < L L
27 26 adantl M L 0 0 < L L
28 21 27 syld M L 0 0 M M < L L
29 28 expd M L 0 0 M M < L L
30 29 impancom M 0 M L 0 M < L L
31 17 30 sylbi M 0 L 0 M < L L
32 31 imp M 0 L 0 M < L L
33 16 32 sylbird M 0 L 0 0 < L M L
34 33 com12 0 < L M M 0 L 0 L
35 12 34 simplbiim L M M 0 L 0 L
36 35 3ad2ant2 K 0 L M K < L M M 0 L 0 L
37 36 com12 M 0 L 0 K 0 L M K < L M L
38 37 3adant3 M 0 L 0 M L K 0 L M K < L M L
39 38 imp M 0 L 0 M L K 0 L M K < L M L
40 nn0re K 0 K
41 40 adantr K 0 M 0 L 0 M L K
42 13 3ad2ant1 M 0 L 0 M L M
43 42 adantl K 0 M 0 L 0 M L M
44 14 3ad2ant2 M 0 L 0 M L L
45 44 adantl K 0 M 0 L 0 M L L
46 41 43 45 ltaddsubd K 0 M 0 L 0 M L K + M < L K < L M
47 46 exbiri K 0 M 0 L 0 M L K < L M K + M < L
48 47 com23 K 0 K < L M M 0 L 0 M L K + M < L
49 48 imp K 0 K < L M M 0 L 0 M L K + M < L
50 49 3adant2 K 0 L M K < L M M 0 L 0 M L K + M < L
51 50 impcom M 0 L 0 M L K 0 L M K < L M K + M < L
52 11 39 51 3jca M 0 L 0 M L K 0 L M K < L M K + M 0 L K + M < L
53 52 ex M 0 L 0 M L K 0 L M K < L M K + M 0 L K + M < L
54 53 a1d M 0 L 0 M L N L L + B K 0 L M K < L M K + M 0 L K + M < L
55 5 54 sylbi M 0 L N L L + B K 0 L M K < L M K + M 0 L K + M < L
56 55 imp M 0 L N L L + B K 0 L M K < L M K + M 0 L K + M < L
57 56 2a1i A = L L 0 M 0 L N L L + B K 0 L M K < L M K + M 0 L K + M < L
58 eleq1 A = L A 0 L 0
59 eleq1 A = L A L
60 breq2 A = L K + M < A K + M < L
61 59 60 3anbi23d A = L K + M 0 A K + M < A K + M 0 L K + M < L
62 61 imbi2d A = L K 0 L M K < L M K + M 0 A K + M < A K 0 L M K < L M K + M 0 L K + M < L
63 62 imbi2d A = L M 0 L N L L + B K 0 L M K < L M K + M 0 A K + M < A M 0 L N L L + B K 0 L M K < L M K + M 0 L K + M < L
64 57 58 63 3imtr4d A = L A 0 M 0 L N L L + B K 0 L M K < L M K + M 0 A K + M < A
65 64 eqcoms L = A A 0 M 0 L N L L + B K 0 L M K < L M K + M 0 A K + M < A
66 1 4 65 mpsyl A Word V M 0 L N L L + B K 0 L M K < L M K + M 0 A K + M < A
67 66 adantr A Word V B Word V M 0 L N L L + B K 0 L M K < L M K + M 0 A K + M < A
68 67 imp A Word V B Word V M 0 L N L L + B K 0 L M K < L M K + M 0 A K + M < A
69 68 com12 K 0 L M K < L M A Word V B Word V M 0 L N L L + B K + M 0 A K + M < A
70 3 69 sylbi K 0 ..^ L M A Word V B Word V M 0 L N L L + B K + M 0 A K + M < A
71 70 adantl K 0 ..^ N M K 0 ..^ L M A Word V B Word V M 0 L N L L + B K + M 0 A K + M < A
72 71 impcom A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M K + M 0 A K + M < A
73 elfzo0 K + M 0 ..^ A K + M 0 A K + M < A
74 72 73 sylibr A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M K + M 0 ..^ A
75 df-3an A Word V B Word V K + M 0 ..^ A A Word V B Word V K + M 0 ..^ A
76 2 74 75 sylanbrc A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A Word V B Word V K + M 0 ..^ A
77 ccatval1 A Word V B Word V K + M 0 ..^ A A ++ B K + M = A K + M
78 76 77 syl A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A ++ B K + M = A K + M
79 1 pfxccatin12lem2c A Word V B Word V M 0 L N L L + B A ++ B Word V M 0 N N 0 A ++ B
80 simpl K 0 ..^ N M K 0 ..^ L M K 0 ..^ N M
81 swrdfv A ++ B Word V M 0 N N 0 A ++ B K 0 ..^ N M A ++ B substr M N K = A ++ B K + M
82 79 80 81 syl2an A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A ++ B substr M N K = A ++ B K + M
83 simplll A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A Word V
84 simplrl A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M M 0 L
85 1 eleq1i L 0 A 0
86 elnn0uz L 0 L 0
87 eluzfz2 L 0 L 0 L
88 86 87 sylbi L 0 L 0 L
89 1 oveq2i 0 L = 0 A
90 88 89 eleqtrdi L 0 L 0 A
91 85 90 sylbir A 0 L 0 A
92 4 91 syl A Word V L 0 A
93 92 ad3antrrr A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M L 0 A
94 simprr A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M K 0 ..^ L M
95 swrdfv A Word V M 0 L L 0 A K 0 ..^ L M A substr M L K = A K + M
96 83 84 93 94 95 syl31anc A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A substr M L K = A K + M
97 78 82 96 3eqtr4d A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A ++ B substr M N K = A substr M L K
98 97 ex A Word V B Word V M 0 L N L L + B K 0 ..^ N M K 0 ..^ L M A ++ B substr M N K = A substr M L K